scholarly journals Computation of approximate solution to COVID-19 mathematical model

2021 ◽  
Vol 2 (3) ◽  
pp. 21-28
Author(s):  
AND EIMAN ◽  
ZAKIR ULLAH ◽  
NAIB UR RAHMAN ◽  
FARMAN ULLAH

In this work, we investigate a modified population model of non-infected and infected (SI) compartmentsto predict the spread of the infectious disease COVID-19 in Pakistan. For Approximate solution, we use LaplaceAdomian Decomposition Method (LADM). With the help of the said technique, we develop an algorithmto compute series type solution to the proposed problem. We compute few terms approximate solutionscorresponding to different compartment. With the help of MATLAB, we also plot our approximate solutionsfor different compartment graphically.

CALCOLO ◽  
1979 ◽  
Vol 16 (4) ◽  
pp. 399-414 ◽  
Author(s):  
G. I. Marchuk ◽  
L. N. Belykh

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hassan Eltayeb ◽  
Imed Bachar ◽  
Yahya T. Abdalla

Abstract In this study, the double Laplace Adomian decomposition method and the triple Laplace Adomian decomposition method are employed to solve one- and two-dimensional time-fractional Navier–Stokes problems, respectively. In order to examine the applicability of these methods some examples are provided. The presented results confirm that the proposed methods are very effective in the search of exact and approximate solutions for the problems. Numerical simulation is used to sketch the exact and approximate solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


2020 ◽  
Vol 4 (1) ◽  
pp. 448-455
Author(s):  
Mulugeta Andualem ◽  
◽  
Atinafu Asfaw ◽  

Nonlinear initial value problems are somewhat difficult to solve analytically as well as numerically related to linear initial value problems as their variety of natures. Because of this, so many scientists still searching for new methods to solve such nonlinear initial value problems. However there are many methods to solve it. In this article we have discussed about the approximate solution of nonlinear first order ordinary differential equation using ZZ decomposition method. This method is a combination of the natural transform method and Adomian decomposition method.


2020 ◽  
Vol 34 ◽  
pp. 02002
Author(s):  
Aurelia Florea ◽  
Cristian Lăzureanu

In this paper we consider a three-dimensional nonlinear system which models the dynamics of a population during an epidemic disease. The considered model is a SIS-type system in which a recovered individual automatically becomes a susceptible one. We take into account the births and deaths, and we also consider that susceptible individuals are divided into two groups: non-vaccinated and vaccinated. In addition, we assume a medical scenario in which vaccinated people take a special measure to quarantine their newborns. We study the stability of the considered system. Numerical simulations point out the behavior of the considered population.


Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


2020 ◽  
Vol 19 ◽  
pp. 103510
Author(s):  
Anwarud Din ◽  
Kamal Shah ◽  
Aly Seadawy ◽  
Hussam Alrabaiah ◽  
Dumitru Baleanu

Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950069 ◽  
Author(s):  
JAMSHAID UL RAHMAN ◽  
DIANCHEN LU ◽  
MUHAMMAD SULEMAN ◽  
JI-HUAN HE ◽  
MUHAMMAD RAMZAN

The foremost purpose of this paper is to present a valuable numerical procedure constructed on Elzaki transform and He’s Homotopy perturbation method (HPM) for nonlinear partial differential equation arising in spatial flow characterizing the general biological population model for animals. The actions are made usually by mature animals driven out by intruders or by young animals just accomplished maturity moving out of their parental region to initiate breeding region of their own. He–Elzaki method is a blend of Elzaki transform and He’s HPM. The results attained are compared with Sumudu decomposition method (SDM). The numerical results attained by suggested method specify that the procedure is easy to implement and precise. These outcomes reveal that the proposed method is computationally very striking.


Sign in / Sign up

Export Citation Format

Share Document