scholarly journals Uniqueness of continuous solution to $q$-Hilfer fractional hybrid integro-difference equation of variable order

2021 ◽  
Vol 2 (3) ◽  
pp. 88-98
Author(s):  
IDRIS AHMED ◽  
Norravich Limpanukorn ◽  
Muhammad Jamilu Ibrahim

In this paper, the authors introduced a novel definition based on Hilfer fractional derivative, which name $q$-Hilfer fractional derivative of variable order. And the uniqueness of solution to $q$-Hilfer fractional hybrid integro-difference equation of variable order of the form \eqref{eq:varorderfrac} with $0 < \alpha(t) < 1$, $0 \leq \beta \leq 1$, and $0 < q < 1$ is studied. Moreover, an example is provided to demonstrate the result.

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 782
Author(s):  
Fangying Song ◽  
George Em Karniadakis

Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.


2021 ◽  
Vol 10 (1) ◽  
pp. 1301-1315
Author(s):  
Eduardo Cuesta ◽  
Mokhtar Kirane ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

Abstract We consider a fractional derivative with order varying in time. Then, we derive for it a Leibniz' inequality and an integration by parts formula. We also study an initial value problem with our time variable order fractional derivative and present a regularity result for it, and a study on the asymptotic behavior.


Author(s):  
Mohamed M. Khader

AbstractThis paper is devoted to introduce a numerical treatment using the generalized Adams-Bashforth-Moulton method for some of the variable-order fractional modeling dynamics problems, such as Riccati and Logistic differential equations. The fractional derivative is described in Caputo variable-order fractional sense. The obtained numerical results of the proposed models show the simplicity and efficiency of the proposed method. Moreover, the convergence order of the method is also estimated numerically.


Meccanica ◽  
2021 ◽  
Author(s):  
Tomasz Blaszczyk ◽  
Krzysztof Bekus ◽  
Krzysztof Szajek ◽  
Wojciech Sumelka

AbstractIn this paper, the Riesz-Caputo fractional derivative of variable order with fixed memory is considered. The studied non-integer differential operator is approximated by means of modified basic rules of numerical integration. The three proposed methods are based on polynomial interpolation: piecewise constant, piecewise linear, and piecewise quadratic interpolation. The errors generated by the described methods and the experimental rate of convergence are reported. Finally, an application of the Riesz-Caputo fractional derivative of space-dependent order in continuum mechanics is depicted.


Author(s):  
M. Hosseininia ◽  
M. H. Heydari ◽  
Z. Avazzadeh ◽  
F. M. Maalek Ghaini

AbstractThis article studies a numerical scheme for solving two-dimensional variable-order time fractional nonlinear advection-diffusion equation with variable coefficients, where the variable-order fractional derivative is in the Caputo type. The main idea is expanding the solution in terms of the 2D Legendre wavelets (2D LWs) where the variable-order time fractional derivative is discretized. We describe the method using the matrix operators and then implement it for solving various types of fractional advection-diffusion equations. The experimental results show the computational efficiency of the new approach.


Author(s):  
Felix Costa ◽  
Junior Cesar Alves Soares ◽  
Stefânia Jarosz

In this paper, some important properties concerning the κ-Hilfer fractional derivative are discussed. Integral transforms for these operators are derived as particular cases of the Jafari transform. These integral transforms are used to derive a fractional version of the fundamental theorem of calculus. Keywords: Integral transforms, Jafari transform, κ-gamma function, κ-beta function, κ-Hilfer fractional derivative, κ-Riesz fractional derivative, κ-fractional operators.


Sign in / Sign up

Export Citation Format

Share Document