scholarly journals Variable-Order Fractional Models for Wall-Bounded Turbulent Flows

Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 782
Author(s):  
Fangying Song ◽  
George Em Karniadakis

Modeling of wall-bounded turbulent flows is still an open problem in classical physics, with relatively slow progress in the last few decades beyond the log law, which only describes the intermediate region in wall-bounded turbulence, i.e., 30–50 y+ to 0.1–0.2 R+ in a pipe of radius R. Here, we propose a fundamentally new approach based on fractional calculus to model the entire mean velocity profile from the wall to the centerline of the pipe. Specifically, we represent the Reynolds stresses with a non-local fractional derivative of variable-order that decays with the distance from the wall. Surprisingly, we find that this variable fractional order has a universal form for all Reynolds numbers and for three different flow types, i.e., channel flow, Couette flow, and pipe flow. We first use existing databases from direct numerical simulations (DNSs) to lean the variable-order function and subsequently we test it against other DNS data and experimental measurements, including the Princeton superpipe experiments. Taken together, our findings reveal the continuous change in rate of turbulent diffusion from the wall as well as the strong nonlocality of turbulent interactions that intensify away from the wall. Moreover, we propose alternative formulations, including a divergence variable fractional (two-sided) model for turbulent flows. The total shear stress is represented by a two-sided symmetric variable fractional derivative. The numerical results show that this formulation can lead to smooth fractional-order profiles in the whole domain. This new model improves the one-sided model, which is considered in the half domain (wall to centerline) only. We use a finite difference method for solving the inverse problem, but we also introduce the fractional physics-informed neural network (fPINN) for solving the inverse and forward problems much more efficiently. In addition to the aforementioned fully-developed flows, we model turbulent boundary layers and discuss how the streamwise variation affects the universal curve.

2019 ◽  
Vol 22 (6) ◽  
pp. 1675-1688 ◽  
Author(s):  
Pavan Pranjivan Mehta ◽  
Guofei Pang ◽  
Fangying Song ◽  
George Em Karniadakis

Abstract The first fractional model for Reynolds stresses in wall-bounded turbulent flows was proposed by Wen Chen [2]. Here, we extend this formulation by allowing the fractional order α(y) of the model to vary with the distance from the wall (y) for turbulent Couette flow. Using available direct numerical simulation (DNS) data, we formulate an inverse problem for α(y) and design a physics-informed neural network (PINN) to obtain the fractional order. Surprisingly, we found a universal scaling law for α(y+), where y+ is the non-dimensional distance from the wall in wall units. Therefore, we obtain a variable-order fractional model that can be used at any Reynolds number to predict the mean velocity profile and Reynolds stresses with accuracy better than 1%.


2021 ◽  
Vol 24 (4) ◽  
pp. 1003-1014
Author(s):  
J. A. Tenreiro Machado

Abstract This paper proposes a conceptual experiment embedding the model of a bouncing ball and the Grünwald-Letnikov (GL) formulation for derivative of fractional order. The impacts of the ball with the surface are modeled by means of a restitution coefficient related to the coefficients of the GL fractional derivative. The results are straightforward to interpret under the light of the classical physics. The mechanical experiment leads to a physical perspective and allows a straightforward visualization. This strategy provides not only a motivational introduction to students of the fractional calculus, but also triggers possible discussion with regard to the use of fractional models in mechanics.


2017 ◽  
Vol 34 (8) ◽  
pp. 2815-2835 ◽  
Author(s):  
S. Sahoo ◽  
S. Saha Ray ◽  
S. Das

Purpose In this paper, the formulation and analytic solutions for fractional continuously variable order dynamic models, namely, fractional continuously mass-spring damper (continuously variable fractional order) systems, have been presented. The authors will demonstrate via two cases where the frictional damping given by fractional derivative, the order of which varies continuously – while the mass moves in a guide. Here, the continuously changing nature of the fractional-order derivative for dynamic systems has been studied for the first time. The solutions of the fractional continuously variable order mass-spring damper systems have been presented here by using a successive recursive method, and the closed form of the solutions has been obtained. By using graphical plots, the nature of the solutions has been discussed for the different cases of continuously variable fractional order of damping force for oscillator. The purpose of the paper is to formulate the continuously variable order mass-spring damper systems and find their analytical solutions by successive recursion method. Design/methodology/approach The authors have used the viscoelastic and viscous – viscoelastic dampers for describing the damping nature of the oscillating systems, where the order of the fractional derivative varies continuously. Findings By using the successive recursive method, here, the authors find the solution of the fractional continuously variable order mass-spring damper systems, and then obtain close-form solutions. The authors then present and discuss the solutions obtained in the cases with the continuously variable order of damping for an oscillator through graphical plots. Originality/value Formulation of fractional continuously variable order dynamic models has been described. Fractional continuous variable order mass-spring damper systems have been analysed. A new approach to find solutions of the aforementioned dynamic models has been established. Viscoelastic and viscous – viscoelastic dampers are described. The discussed damping nature of the oscillating systems has not been studied yet.


Author(s):  
Hugo D. Pasinato ◽  
Ezequiel Arthur Krumrick

Abstract This research uses data from direct numerical simulation (DNS) to characterize the different errors associated with a Reynolds-averaged Navier-Stokes (RANS) simulation. The statistics from DNS (Reynolds stresses, kinetic energy of turbulence, $\kappa$, and dissipation of turbulence, $\epsilon$), are fed into a RANS simulation with the same Reynolds number, geometry, and numerical code used for DNS. Three integral metrics error based on the mean velocity, the moduli of the mean rate-of-strain tensor, and the wall shear stress are used to characterize the errors associated with the RANS technique, with the RANS model, and with the linear eddy viscosity model (LEVM). For developed and perturbed flow, it is found that the mean velocity of the RANS simulations with the DNS statistics is almost the same as the mean velocity from DNS data. This procedure enables the study of the relative importance of the different Reynolds stresses in a particular flow. It is shown that for the bounded perturbed turbulent flows studied here, almost all the necessary effects of turbulence are contained in the Reynolds shear stress.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 457
Author(s):  
Manuel Henriques ◽  
Duarte Valério ◽  
Paulo Gordo ◽  
Rui Melicio

Many image processing algorithms make use of derivatives. In such cases, fractional derivatives allow an extra degree of freedom, which can be used to obtain better results in applications such as edge detection. Published literature concentrates on grey-scale images; in this paper, algorithms of six fractional detectors for colour images are implemented, and their performance is illustrated. The algorithms are: Canny, Sobel, Roberts, Laplacian of Gaussian, CRONE, and fractional derivative.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Aziz Khan ◽  
Hashim M. Alshehri ◽  
J. F. Gómez-Aguilar ◽  
Zareen A. Khan ◽  
G. Fernández-Anaya

AbstractThis paper is about to formulate a design of predator–prey model with constant and time fractional variable order. The predator and prey act as agents in an ecosystem in this simulation. We focus on a time fractional order Atangana–Baleanu operator in the sense of Liouville–Caputo. Due to the nonlocality of the method, the predator–prey model is generated by using another FO derivative developed as a kernel based on the generalized Mittag-Leffler function. Two fractional-order systems are assumed, with and without delay. For the numerical solution of the models, we not only employ the Adams–Bashforth–Moulton method but also explore the existence and uniqueness of these schemes. We use the fixed point theorem which is useful in describing the existence of a new approach with a particular set of solutions. For the illustration, several numerical examples are added to the paper to show the effectiveness of the numerical method.


2021 ◽  
Vol 10 (1) ◽  
pp. 1301-1315
Author(s):  
Eduardo Cuesta ◽  
Mokhtar Kirane ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

Abstract We consider a fractional derivative with order varying in time. Then, we derive for it a Leibniz' inequality and an integration by parts formula. We also study an initial value problem with our time variable order fractional derivative and present a regularity result for it, and a study on the asymptotic behavior.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 850-856 ◽  
Author(s):  
Jun-Sheng Duan ◽  
Yun-Yun Xu

Abstract The steady state response of a fractional order vibration system subject to harmonic excitation was studied by using the fractional derivative operator ${}_{-\infty} D_t^\beta,$where the order β is a real number satisfying 0 ≤ β ≤ 2. We derived that the fractional derivative contributes to the viscoelasticity if 0 < β < 1, while it contributes to the viscous inertia if 1 < β < 2. Thus the fractional derivative can represent the “spring-pot” element and also the “inerterpot” element proposed in the present article. The viscosity contribution coefficient, elasticity contribution coefficient, inertia contribution coefficient, amplitude-frequency relation, phase-frequency relation, and influence of the order are discussed in detail. The results show that fractional derivatives are applicable for characterizing the viscoelasticity and viscous inertia of materials.


Sign in / Sign up

Export Citation Format

Share Document