scholarly journals Effect of visual information consistency on sentence production: Its relation to visual imagery style

Author(s):  
Miho Nishiguchi ◽  
Takashi Kusumi
2002 ◽  
Vol 25 (2) ◽  
pp. 195-196 ◽  
Author(s):  
David Ingle

I support Pylyshyn's skepticism that visual imagery reflects a re-activation of the spatial layout of active neurons embedded within a topographical cortical map of visual space. The pickup of visual information via successive eye movements presents one problem and the two visual systems model poses another difficulty.


2002 ◽  
Vol 55 (3) ◽  
pp. 753-774 ◽  
Author(s):  
Jackie Andrade ◽  
Eva Kemps ◽  
Yves Werniers ◽  
Jon May ◽  
Arnaud Szmalec

Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment 1 replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.


2019 ◽  
Vol 28 (3) ◽  
pp. 266-273 ◽  
Author(s):  
Joel Pearson ◽  
Rebecca Keogh

The ability to remember and manipulate visual information is pervasive and is associated with many cognitive abilities. Yet despite the importance of visual working memory (VWM), there is little consensus among researchers in the field as to which neural areas are necessary and sufficient and which models best describe its capacity. Here, we propose that an assumption that all people remember visual information in the same way has led to much contention and inconsistencies in the field. By accepting that there are multiple cognitive strategies and methods to perform a VWM task, we introduce an individual “precision” approach to the study of memory. We propose that VWM should be redefined, not by the type of stimuli used (e.g., visual) but rather by the specific mental processes (e.g., visual imagery, semantic, propositional, spatial) and the corresponding brain regions used to complete the mnemonic task. We further provide a short how-to guide for measuring different mnemonic strategies used for working memory.


2019 ◽  
Vol 62 (5) ◽  
pp. 1258-1277 ◽  
Author(s):  
Megan K. MacPherson

PurposeThe aim of this study was to determine the impact of cognitive load imposed by a speech production task on the speech motor performance of healthy older and younger adults. Response inhibition, selective attention, and working memory were the primary cognitive processes of interest.MethodTwelve healthy older and 12 healthy younger adults produced multiple repetitions of 4 sentences containing an embedded Stroop task in 2 cognitive load conditions: congruent and incongruent. The incongruent condition, which required participants to suppress orthographic information to say the font colors in which color words were written, represented an increase in cognitive load relative to the congruent condition in which word text and font color matched. Kinematic measures of articulatory coordination variability and movement duration as well as a behavioral measure of sentence production accuracy were compared between groups and conditions and across 3 sentence segments (pre-, during-, and post-Stroop).ResultsIncreased cognitive load in the incongruent condition was associated with increased articulatory coordination variability and movement duration, compared to the congruent Stroop condition, for both age groups. Overall, the effect of increased cognitive load was greater for older adults than younger adults and was greatest in the portion of the sentence in which cognitive load was manipulated (during-Stroop), followed by the pre-Stroop segment. Sentence production accuracy was reduced for older adults in the incongruent condition.ConclusionsIncreased cognitive load involving response inhibition, selective attention, and working memory processes within a speech production task disrupted both the stability and timing with which speech was produced by both age groups. Older adults' speech motor performance may have been more affected due to age-related changes in cognitive and motoric functions that result in altered motor cognition.


Author(s):  
Maya Henry

Abstract Primary progressive aphasia (PPA) is a relatively new diagnostic entity, for which few behavioral treatments have been investigated. Recent work has helped to clarify the nature of distinct PPA variants, including a nonfluent variant (NFV-PPA), a logopenic variant (LV-PPA), and a semantic variant (SV-PPA). This paper reviews treatment research to date in each subtype of PPA, including restitutive, augmentative, and functional approaches. The evidence suggests that restitutive behavioral treatment can result in improved or stabilized language performance within treated domains. Specifically, sentence production and lexical retrieval have been addressed in NFV-PPA, whereas lexical retrieval has been the primary object of treatment in LV and SV-PPA. Use of augmentative communication techniques, as well as implementation of functional communication approaches, also may result in improved communication skills in individuals with PPA. The ideal treatment approach may be one that combines restitutive, augmentative, and functional approaches to treatment, in order to maximize residual cognitive-linguistic skills in patients. Additional research is warranted to determine which modes of treatment are most beneficial in each type of PPA at various stages of severity.


2009 ◽  
Vol 23 (2) ◽  
pp. 63-76 ◽  
Author(s):  
Silke Paulmann ◽  
Sarah Jessen ◽  
Sonja A. Kotz

The multimodal nature of human communication has been well established. Yet few empirical studies have systematically examined the widely held belief that this form of perception is facilitated in comparison to unimodal or bimodal perception. In the current experiment we first explored the processing of unimodally presented facial expressions. Furthermore, auditory (prosodic and/or lexical-semantic) information was presented together with the visual information to investigate the processing of bimodal (facial and prosodic cues) and multimodal (facial, lexic, and prosodic cues) human communication. Participants engaged in an identity identification task, while event-related potentials (ERPs) were being recorded to examine early processing mechanisms as reflected in the P200 and N300 component. While the former component has repeatedly been linked to physical property stimulus processing, the latter has been linked to more evaluative “meaning-related” processing. A direct relationship between P200 and N300 amplitude and the number of information channels present was found. The multimodal-channel condition elicited the smallest amplitude in the P200 and N300 components, followed by an increased amplitude in each component for the bimodal-channel condition. The largest amplitude was observed for the unimodal condition. These data suggest that multimodal information induces clear facilitation in comparison to unimodal or bimodal information. The advantage of multimodal perception as reflected in the P200 and N300 components may thus reflect one of the mechanisms allowing for fast and accurate information processing in human communication.


2006 ◽  
Vol 27 (4) ◽  
pp. 218-228 ◽  
Author(s):  
Paul Rodway ◽  
Karen Gillies ◽  
Astrid Schepman

This study examined whether individual differences in the vividness of visual imagery influenced performance on a novel long-term change detection task. Participants were presented with a sequence of pictures, with each picture and its title displayed for 17  s, and then presented with changed or unchanged versions of those pictures and asked to detect whether the picture had been changed. Cuing the retrieval of the picture's image, by presenting the picture's title before the arrival of the changed picture, facilitated change detection accuracy. This suggests that the retrieval of the picture's representation immunizes it against overwriting by the arrival of the changed picture. The high and low vividness participants did not differ in overall levels of change detection accuracy. However, in replication of Gur and Hilgard (1975) , high vividness participants were significantly more accurate at detecting salient changes to pictures compared to low vividness participants. The results suggest that vivid images are not characterised by a high level of detail and that vivid imagery enhances memory for the salient aspects of a scene but not all of the details of a scene. Possible causes of this difference, and how they may lead to an understanding of individual differences in change detection, are considered.


Sign in / Sign up

Export Citation Format

Share Document