Membrane fouling in nanofiltration/reverse osmosis membranes coupled with a membrane bioreactor used for municipal wastewater treatment

2010 ◽  
Vol 18 (1-3) ◽  
pp. 292-296 ◽  
Author(s):  
Naoko Ogawa ◽  
Katsuki Kimura ◽  
Yoshimasa Watanabe
2011 ◽  
Vol 63 (1) ◽  
pp. 57-65 ◽  
Author(s):  
J. M. Choubert ◽  
S. Martin Ruel ◽  
M. Esperanza ◽  
H. Budzinski ◽  
C. Miège ◽  
...  

The next challenge of wastewater treatment is to reliably remove micro-pollutants at the microgram per litre range in order to meet the environmental quality standards set by new regulations like the Water Framework Directive. The present work assessed the efficiency of different types of primary, secondary and tertiary processes for the removal of more than 100 priority substances and other relevant emerging pollutants through on-site mass balances over 19 municipal wastewater treatment lines. Secondary biological processes proved to be in average 30% more efficient than primary settling processes. The activated sludge (AS) process led to a significant reduction of pollution loads (more than 50% removal for 70% of the substances detected). Biofilm processes led to equivalent removal efficiencies compared to AS, except for some pharmaceuticals. The membrane bioreactor (MBR) process allowed to upgrade removal efficiencies of some substances only partially degraded during conventional AS processes. Preliminary tertiary processes like tertiary settling and sand filtration could achieve significant removal for adsorbable substances. Advanced tertiary processes, like ozonation, activated carbon and reverse osmosis were all very efficient (close to 100%) to complete the removal of polar pesticides and pharmaceuticals; less polar substances being better retained by reverse osmosis.


Author(s):  
Jianwei Liu ◽  
Mengfei Zhao ◽  
Cui Duan ◽  
Peng Yue ◽  
Tinggang Li

Abstract The widespread implementation of municipal wastewater treatment and reuse must first ensure the safety of reused wastewater. The effluent of the municipal wastewater treatment plant contains a large amount of dissolved organic matter (DOM), which adversely affects the reuse of wastewater. In this study, the ultrafiltration (UF) + reverse osmosis (RO) process was used to treat the effluent from wastewater treatment plants. The relationship between the removal performance, membrane fouling of the UF + RO process, and DOM characteristics of influent were studied. The results show that DOM can be removed effectively by UF + RO process. The UF mainly removes DOM with a molecular weight greater than 10 kDa, while RO has a significant removal effect on low-molecular DOM, which mainly cause UF and RO membrane fouling. The UF + RO process has a significant removal rate on fulvic acid, humic acid, tyrosine, and tryptophan, and the order is humic acid > fulvic acid > tyrosine > tryptophan. Fulvic acid contributed the most to the UF membrane fouling, while fulvic acid and protein-like proteins contributed mainly to the RO membrane fouling.


2011 ◽  
Vol 365 ◽  
pp. 354-360 ◽  
Author(s):  
Shuo Liu ◽  
Ji Fu Wang ◽  
Bao Zhen Wang ◽  
Bing Wang ◽  
Wei Wan

To solve the problem of eutrophication in receiving water, a novel Membrane Bioreactor (MBR) with combined configuration was designed for municipal wastewater treatment and reclamation. By dividing bioreactor into three zones, the combined MBR operated under anoxic, anaerobic and aerobic conditions. It provided optimum conditions for nitrification, denitrifying and phosphate accumulating bacterial growth which resulted in high biological nutrient removal rate directly. The operational performance of combined MBR pilot plant showed that it exhibited high nutrient removal rate on Chemical oxygen demand (CODcr), total nitrogen (TN) and total phosphorus (TP). The mean value of effluent CODcr, TN and TP removal rate was 90.63%, 63.05% and 60.51% respectively during 180 days of operation. In order to obtain stable membrane flux, the combined MBR packed with fibrous bio-film carrier and added diatomite. Furthermore, it could alleviate membrane fouling effectively. As a result, the combined MBR improved effluent water quality significantly and alleviated membrane fouling remarkably.


2020 ◽  
Vol 6 (10) ◽  
pp. 2641-2663
Author(s):  
Yisong Hu ◽  
Hui Cheng ◽  
Jiayuan Ji ◽  
Yu-You Li

Among the various anaerobic digestion technologies developed for wastewater treatment and resource recovery, the anaerobic membrane bioreactor (AnMBR) stands out as a viable alternative to traditional processes.


2012 ◽  
Vol 4 (2) ◽  
pp. 45-51
Author(s):  
Steven Peck ◽  
Craig Bartels ◽  
Naomi Jones ◽  
Aleksey N. Pisarenko ◽  
Dongxu Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document