Production of adsorbent from activated carbon of palm oil shells coated by Fe3O4 particle to remove crystal violet in water

2019 ◽  
Vol 171 ◽  
pp. 281-293 ◽  
Author(s):  
Buhani Buhani ◽  
Suharso Suharso ◽  
Fitria Luziana ◽  
Mita Rilyanti ◽  
Sumadi Sumadi
Author(s):  
A Budianto ◽  
E Kusdarini ◽  
N H Amrullah ◽  
E Ningsih ◽  
K Udyani ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Yeit Haan Teow ◽  
Meng Teck Chong ◽  
Kah Chun Ho ◽  
Abdul Wahab Mohammad

AbstractAiming to mitigate wastewater pollution arising from the palm oil industry, this university-industry research-and-development project focused on the integration of serial treatment processes, including the use of moving bed biofilm reactor (MBBR), pre-treatment with sand filters and activated carbon filters, and membrane technology for aerobically-digested palm oil mill effluent (POME) treatment. To assess the potential of this sustainable alternative practice in the industry, the developed technology was demonstrated in a pilot-scale facility: four combinations (Combinations I to IV) of unit operations were developed in an integrated membrane-filtration system. Combination I includes a MBBR, pre-treatment unit comprising sand filters and activated carbon filters, ultrafiltration (UF) membrane, and reverse osmosis (RO) membrane, while Combination II excludes MBBR, Combination III excludes UF membrane, and Combination IV excludes both MBBR and UF membrane. Life cycle assessment (LCA) was performed to evaluate potential environmental impacts arising from each combination while achieving the goal of obtaining recycled and reusable water from the aerobically-digested POME treatment. It is reported that electricity consumption is the predominant factor contributing to most of those categories (50–77%) as the emissions of carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen oxides, and volatile mercury during the combustion of fossil fuels. Combination I in the integrated membrane-filtration system with all unit operations incurring high electricity consumption (52 MJ) contributed to the greatest environmental impact. Electricity consumption registers the highest impact towards all life cycle impact categories: 73% on climate change, 80% on terrestrial acidification, 51% on eutrophication, and 43% on human toxicity. Conversely, Combination IV is the most environmentally-friendly process, since it involves only two-unit operations – pre-treatment unit (comprising sand filters and activated carbon filters) and RO membrane unit – and thus incurs the least electricity consumption (41.6 MJ). The LCA offers insights into each combination of the operating process and facilitates both researchers and the industry towards sustainable production.


Author(s):  
O. Abdulrahman Adeleke ◽  
Ab Aziz Abdul Latiff ◽  
Mohammed Radin Saphira ◽  
Zawawi Daud ◽  
Norli Ismail ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
pp. 52-57
Author(s):  
Irvan ◽  
Olyvia Putri Wardhani ◽  
Nurul Aini ◽  
Iriany

Crude palm oil (CPO) is the richest natural source of carotenoids which gives the reddish-orange color in crude palm oil. The reddish color in  unprocessed palm oil is disliked by consumer. This research is aimed to adsorb the β–carotene from the CPO using activated carbon, then the kinetics, isotherm models and thermodynamics data of the adsorption process were obtained. The main materials used in this research were CPO and activated carbon. The observed parameters were final concentration  and the amounts of adsorbed β–carotene in activated carbon. The adsorption process was conducted by mixing the adsorbent with CPO with the variation of adsorbent: CPO (w/w) ratio = 1 : 3; 1 : 4; 1 : 5 and 1 : 6 with mixing  speed 120 rpm and the temperature of 40, 50 and 60 oC. The sample of CPO and activated carbon was analyzed at every 2 minutes until the equilibrium was achieved. The final concentration of the unadsorbed β–carotene was analyzed using UV-Vis spectrophotometer. The results showed that the more CPO used in the process, the lower the adsorption percentage. The higher the adsorption temperature, the higher  adsorption percentage. Moreover, the maximum adsorption percentage was 95.108%  obtained at ratio 1 : 3 and T = 60 oC. The adsorption isotherm model which fit with the β–carotene adsorption at T = 60 oC was Langmuir model with the correlation coefficient of 0.959. The adsorption kinetics model which fit with the β–carotene adsorption was the second order kinetics model with the correlation coefficient of 0.998. The value of free energy Gibbs (ΔG) = -24,482.484 ; -24,708.059 and -24,933.634 J/mol for each temperature respectively, value of entropy changes (ΔS) = 22.557 J/mol K, and value of enthalpy changes (ΔH) = -17,421.987 J/mol.


Sign in / Sign up

Export Citation Format

Share Document