Influence of Turbulent Flow on the Localized Corrosion Process of Mild Steel with Inhibited Aqueous Carbon Dioxide Systems

CORROSION ◽  
2002 ◽  
Vol 58 (7) ◽  
pp. 608-619 ◽  
Author(s):  
J. L. Mora-Mendoza ◽  
J. G. Chacon-Nava ◽  
G. Zavala-Olivares ◽  
M. A. González-Núñez ◽  
S. Turgoose
2011 ◽  
Vol 239-242 ◽  
pp. 567-570
Author(s):  
Li Liu ◽  
Cheng Qiang Ren ◽  
Lei Gao

Carbon dioxide corrosion is a very complex electrochemical process. Compositions of formation water in different gas and oil wells are various, which effects on the carbon dioxide corrosion of tubular steel. HCO3- and SO42- were studied in order to further understand their role on the corrosion process. The results show marked difference when they are the main composition while others conditions is the same. HCO3- mitigates the corrosion, because its participation in cathodic and anodic reactions accelerates passivation. However, corrosion in formation water mainly containing Na2SO4 is severe, which presents higher general corrosion rate and more dangerous localized corrosion.


Author(s):  
Lebe A. Nnanna ◽  
Wisdom O. John ◽  
Tochukwu E. Esihe ◽  
Kelechi C. Denkoro ◽  
Victor I. Okparaku ◽  
...  

Inhibition effect of Costusafer on mild steel in 0.5 M HCl was studied using gravimetric method at room temperature. It was found out that Costusafer inhibited the corrosion of mild steel in the acidic environment and that the efficiency of inhibition increased as the concentration of the inhibitor in the environment increased. The data was used to test different isotherms and it suited the Langmuir isotherm. A value of -15.995 kJmol-1 was gotten for the ∆Goads. This value showed that the extracts of Costusafer inhibited the corrosion process through physiosorption mechanism. The high value of inhibition efficiency of the extract as the concentration increased in rationalized in terms of the increase in herteroatoms, saponnins and tannins which are present in the extract.


2015 ◽  
Vol 1766 ◽  
pp. 73-80
Author(s):  
A. Carmona ◽  
R. Orozco-Cruz ◽  
E. Mejía-Sánchez ◽  
A. Contreras ◽  
R. Galván-Martínez

ABSTRACTAn electrochemical impedance spectroscopy (EIS) corrosion study of API X70 steel was carried out in synthetic seawater with different rotation speeds using a rotating cylinder electrode (RCE) to control the hydrodynamic conditions at room temperature, atmospheric pressure and 24 h of exposure time. A superficial analysis through a scanning electron microscope (SEM) was used to analyze the corrosion type. The rotation speed used was 0 rpm (static condition), 1000, 3000 and 5000 rpm (turbulent flow). The results show that the turbulent flow conditions affect directly the corrosion rate (CR) of the steel, because all values of the CR under turbulent flow conditions are higher than the CR values at static conditions. In addition, it is important to point out that at turbulent flow conditions, the CR increased as the rotation speed also increased. The morphology of the corrosion in all experiments was localized corrosion.


1993 ◽  
Vol 115 (2) ◽  
pp. 142-147 ◽  
Author(s):  
I. Wierzba ◽  
K. Kar ◽  
G. A. Karim

The blowout limits of a methane diffusion flame in a co-flowing air-fuel or air-diluent stream were determined for a range of surrounding co-flow stream velocities, both laminar and turbulent, up to ~ 1.50 m/s. Methane, ethylene, propane and hydrogen were used as the fuels in the surrounding co-flow stream while nitrogen and carbon dioxide were used as diluents. The experimental results show that the velocity of the surrounding stream affects the blowout phenomena significantly. An increase in the stream velocity has a detrimental effect on the blowout limits at very low velocities up to 0.30 m/s (essentially laminar flow) and at velocities higher than 1.50 m/s (turbulent flow). The addition of a fuel to the air stream in most cases enhances the blowout limit of a methane diffusion flame. However, different trends in the variation of the blowout limits with the surrounding fuel concentration were observed, depending on the type of fuel used and on whether the surrounding coflow stream was laminar or turbulent. The addition of nitrogen or carbon dioxide to the air stream results in decreasing the blowout limits. The effect is more severe at the higher velocities.


CORROSION ◽  
10.5006/0620 ◽  
2013 ◽  
Vol 69 (1) ◽  
pp. 15-24 ◽  
Author(s):  
X. Jiang ◽  
S. Nešić ◽  
B. Kinsella ◽  
B. Brown ◽  
D. Young

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3801 ◽  
Author(s):  
Gabriela Aristia ◽  
Le Quynh Hoa ◽  
Ralph Bäßler

This study focuses on the corrosion mechanism of carbon steel exposed to an artificial geothermal brine influenced by carbon dioxide (CO2) gas. The tested brine simulates a geothermal source in Sibayak, Indonesia, containing 1500 mg/L of Cl−, 20 mg/L of SO42−, and 15 mg/L of HCO3− with pH 4. To reveal the temperature effect on the corrosion behavior of carbon steel, exposure and electrochemical tests were carried out at 70 °C and 150 °C. Surface analysis of corroded specimens showed localized corrosion at both temperatures, despite the formation of corrosion products on the surface. After 7 days at 150 °C, SEM images showed the formation of an adherent, dense, and crystalline FeCO3 layer. Whereas at 70 °C, the corrosion products consisted of chukanovite (Fe2(OH)2CO3) and siderite (FeCO3), which are less dense and less protective than that at 150 °C. Control experiments under Ar-environment were used to investigate the corrosive effect of CO2. Free corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) confirm that at both temperatures, the corrosive effect of CO2 was more significant compared to that measured in the Ar-containing solution. In terms of temperature effect, carbon steel remained active at 70 °C, while at 150 °C, it became passive due to the FeCO3 formation. These results suggest that carbon steel is more susceptible to corrosion at the near ground surface of a geothermal well, whereas at a deeper well with a higher temperature, there is a possible risk of scaling (FeCO3 layer). A longer exposure test at 150 °C with a stagnant solution for 28 days, however, showed the unstable FeCO3 layer and therefore a deeper localized corrosion compared to that of seven-day exposed specimens.


Sign in / Sign up

Export Citation Format

Share Document