Microstructure Dependence of Stress Corrosion Cracking Initiation in X-65 Pipeline Steel Exposed to a Near-Neutral pH Soil Environment

CORROSION ◽  
2004 ◽  
Vol 60 (3) ◽  
pp. 275-283 ◽  
Author(s):  
R. Chu ◽  
W. Chen ◽  
S.-H. Wang ◽  
F. King ◽  
T. R. Jack ◽  
...  

Abstract A study was carried out to understand mechanisms of stress corrosion crack initiation in an X-65 pipeline steel exposed to a near-neutral pH soil environment under a mechanical loading condition typical of a pipeline operating in the field. Microcracks initiated on the polished surface of the X-65 pipeline steel after long-term exposure at open-circuit potential in a near-neutral pH synthetic soil solution. It was found that these microcracks were initiated mostly from pits at metallurgical discontinuities such as grain boundaries, pearlitic colonies, and banded phases in the steel. Strong preferential dissolution was observed along planes of the banded structures in the steel. Selective corrosion at these metallurgical discontinuities is attributed to the anodic nature of those areas relative to the neighboring steel surface. Consistent with previous observations, no increased susceptibility to crack initiation was found at physical discontinuities mechanically introduced into the surface of steel exposed to synthetic soil solution at open-circuit potential.

Author(s):  
Pellumb Jakupi ◽  
Bill Santos ◽  
Wilfred Binns ◽  
Ivan Barker ◽  
Jenny Been

Newly designed miniature Compact Tension (CT) specimens, designed according to standard ASTM dimension ratios, and machined out of previously in-service X65 pipeline steel were exposed to super-imposed cyclic loading at high mean stresses in NS4 solution to determine the behaviour of X65 steel to ripple loading under near neutral pH conditions. Electron Back-Scatter Diffraction (EBSD) was used to study the microstructural grain geometry to determine if it influences stress-corrosion cracking (SCC) initiation and propagation. Prior to ripple load testing, finely polished X65 surfaces were subjected to EBSD measurements to characterize the microstructure’s geometry; i.e., grain and grain boundary orientations and texture. On the same locations where EBSD maps were recorded, a grid of cross-shaped resist markings — approximately 1–5 μm in size — were deposited every 15 μm across the analyzed surfaces. Following microscopic analyses the specimens were pre-cracked and re-examined to determine whether the crack initiation procedure preconditions the residual strain (quantified by grain misorientations) around an induced crack. Then, ripple load testing at stress levels characterized by load ratios (R) greater than 0.9 was performed, while simultaneously monitoring the open-circuit potential (OCP) at room temperature. The originally characterized surface was again re-examined to determine if the crack tip propagated preferably along a specific crystallographic grain orientation by comparing the shifts in each cross-shaped grid. Results from this investigation will help determine if there is a link between microstructural grain geometries and transgranular stress corrosion cracking.


Author(s):  
Shidong Wang ◽  
Lyndon Lamborn ◽  
Karina Chevil ◽  
Erwin Gamboa ◽  
Weixing Chen

Abstract Near-neutral pH stress corrosion cracking (SCC) is a significant threat to the operational safety and reliability of gas and oil pipelines. The SCC cracks are typically formed in colonies with different crack density populations on the external surface of the pipe. The density of SCC cracks affect how pipeline integrity and remaining lifetime are assessed. Although sparse and dense crack colonies are commonly observed on pipelines, it has not been well established how these crack colonies with different crack populations were developed in the field. This research was made in an attempt to replicate near-neutral pH SCC cracks with different crack densities in the laboratory with realistic loading conditions commonly found during field operation. An X65 pipeline steel with different surface preparations was used. The results showed that the dense near-neutral pH SCC cracks were successfully reproduced on the primer-coated samples, whereas sparse cracks were reproduced on the mill-scaled and polished samples. The densely spaced cracks could transform into sparsely spaced cracks when most of the primer layer and mill scale had been removed during the long period of corrosion under cyclic loading and further corrosion occurred thinning the crack density. The results of crack initiation obtained from this investigation have also been found to be quite consistent with crack initiation scenarios found during field operation.


2012 ◽  
Vol 48 (10) ◽  
pp. 1267 ◽  
Author(s):  
Zhiying WANG ◽  
Jianqiu WANG ◽  
En-hou HAN ◽  
Wei KE ◽  
Maocheng YAN ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 625
Author(s):  
Lijuan Chen ◽  
Bo Wei ◽  
Xianghong Xu

The influence of sulfate-reducing bacteria (SRB) on the corrosion behaviors of X80 pipeline steel was investigated in a soil environment by electrochemical techniques and surface analysis. It was found that SRB grew well in the acidic soil environment and further attached to the coupon surface, resulting in microbiologically influenced corrosion (MIC) of the steel. The corrosion process of X80 steel was significantly affected by the SRB biofilm on the steel surface. Steel corrosion was inhibited by the highly bioactive SRB biofilm at the early stage of the experiment, while SRB can accelerate the corrosion of steel at the later stage of the experiment. The steel surface suffered severe pitting corrosion in the SRB-containing soil solution.


RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 36876-36885 ◽  
Author(s):  
Bingying Wang ◽  
Yu Yin ◽  
Zhiwei Gao ◽  
Zhenbo Hou ◽  
Wenchun Jiang

A developed surface enhancement technique, USRP, was applied on X80 pipeline steel and the stress corrosion cracking susceptibility was studied.


Sign in / Sign up

Export Citation Format

Share Document