The Chemistry of Azole Copper Corrosion Inhibitors in Cooling Waters

CORROSION ◽  
1985 ◽  
Vol 41 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Orin Hollander ◽  
Roger C. May

Abstract Although benzotriazole and tolyltriazole are well known as extremely effective inhibitors of copper corrosion, very little has been reported in the literature regarding their chemistry, particularly in near neutral, low conductivity aqueous media. The behavior of these inhibitors was studied under typical cooling water conditions. Relationships between chemical properties and inhibition behavior are discussed. A modified theory of the mechanism of inhibition is proposed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paulina Fernández-Soto ◽  
Joshua Casulli ◽  
Danilo Solano-Castro ◽  
Pablo Rodríguez-Fernández ◽  
Thomas A. Jowitt ◽  
...  

AbstractSapM is a secreted virulence factor from Mycobacterium tuberculosis critical for pathogen survival and persistence inside the host. Its full potential as a target for tuberculosis treatment has not yet been exploited because of the lack of potent inhibitors available. By screening over 1500 small molecules, we have identified new potent and selective inhibitors of SapM with an uncompetitive mechanism of inhibition. The best inhibitors share a trihydroxy-benzene moiety essential for activity. Importantly, the inhibitors significantly reduce mycobacterial burden in infected human macrophages at 1 µM, and they are selective with respect to other mycobacterial and human phosphatases. The best inhibitor also reduces intracellular burden of Francisella tularensis, which secretes the virulence factor AcpA, a homologue of SapM, with the same mechanism of catalysis and inhibition. Our findings demonstrate that inhibition of SapM with small molecule inhibitors is efficient in reducing intracellular mycobacterial survival in host macrophages and confirm SapM as a potential therapeutic target. These initial compounds have favourable physico-chemical properties and provide a basis for exploration towards the development of new tuberculosis treatments. The efficacy of a SapM inhibitor in reducing Francisella tularensis intracellular burden suggests the potential for developing broad-spectrum antivirulence agents to treat microbial infections.


2015 ◽  
Vol 93 ◽  
pp. 293-300 ◽  
Author(s):  
Fang Liu ◽  
Li Zhang ◽  
Xi Yan ◽  
Xianhui Lu ◽  
Ya Gao ◽  
...  

Author(s):  
Shushank Sharma

The oral route is the most convenient route of administration for various drugs. It is viewed as the most convenient, most secure, and economical route for patients. Fast disintegrating tablets are popular these days as they disintegrate in the mouth within a few seconds without the use of water. The burdens of regularly used medications in pediatric and geriatric patients have been overwhelmed by quick-dissolving tablets. Natural superdisintegrants have been used for fast-dissolving tablets because they are biodegradable, chemically inert, non-harmful, more affordable, and generally accessible. Natural polymer improves the properties of the tablet as it is commonly used as diluents and binders. Natural super disintegrants decrease the release time and give healthful results to the patients. Most polymers are obtained from nature, they are cost-effective, non-toxic, and non-irritants. Disintegration is the most important step for releasing the drug from the tablet matrix to decrease the disintegration time. In this, drug and polymers come in contact with water, it swells, hydrate, and react chemically to release the drug in the mouth and gastrointestinal tract. Superdisintegrants are those substances that encourage the quick breaking down with a lesser amount contrasted with disintegrants. The quick disintegrants tablets are set up by utilizing suitable polymers which rely on the Physico-chemical properties of drugs and excipients, for example, drug and polymer compatibility, hardness and thickness of tablet, nature of drug and excipients, PH of drug and release parameters of drug formulation. Superdisintegrants are the vehicles added to tablet formulation to advance the breaking of tablets and capsules into small microparticles in aqueous media resulting in to increase in the surface area and promote quick drug release. The disintegrants have a significant capacity to oppose the efficacy of tablet binders and compression forces to form the tablet. Commonly there are three methods to incorporate disintegrants into the tablet: A. Inner addition, B. External expansion, C. Internal, and external addition. Most of the regularly based tablets are those expected to be swallow, disintegrate and release medicaments in the gastrointestinal tract but over a while tablets are manufactured to deliver medicaments in the mouth and gastrointestinal tract within few seconds of swallowing. It has been demonstrated that characteristic polymers are more effective than synthetic polymers. Some research is going to develop safe and effective medication with super disintegrating agents that can be dissolved rapidly to treat the disease.


Copper ◽  
2007 ◽  
pp. 119-124
Author(s):  
E. Stupniek-Lisac ◽  
Helena Otmai

Sign in / Sign up

Export Citation Format

Share Document