A Comparison between Grain Boundary Chromium Depletion in Austenitic Stainless Steel and Corrosion in the Modified Strauss Test

CORROSION ◽  
1986 ◽  
Vol 42 (9) ◽  
pp. 522-531 ◽  
Author(s):  
C. L. Briant ◽  
E. L. Hall
Author(s):  
M.K. Samal

In this chapter, a mathematical model for rate of formation of chromium carbides near the grain boundary, which is a pre-cursor to chromium depletion and corresponding sensitization behavior in stainless steels, is presented. This model along with the diffusion equation for chromium in the grain has been used to obtain chromium depletion profiles at various time and temperature conditions. Finite difference method has been used to solve the above equations in the spherical co-ordinate system and the results of time-temperature-sensitization diagrams of four different types of alloys have been compared with those of experiment from literature. For the problem of low temperature sensitization and corresponding inter-granular corrosion in austenitic stainless steel, it is very difficult to carry out experiment at higher temperatures and justify its validity at lower operating temperatures by extrapolation. The development of predictive models is highly useful in order to design the structures for prevention of corrosion of the material in aggressive environments.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1193 ◽  
Author(s):  
Kolli ◽  
Javaheri ◽  
Kömi ◽  
Porter

The effect of grain size in the range 72 to 190 μm and carbon content in the range 0.105–0.073 wt.% on the intergranular corrosion of the austenitic stainless steel 301 has been investigated. Grain boundary chromium depletion has been studied directly using energy dispersive X-ray spectroscopy combined with scanning transmission electron microscopy and indirectly using double loop electrochemical potentiokinetic reactivation tests. In addition, chromium depletion has been modelled using the CALPHAD Thermo-Calc software TC-DICTRA. It is shown that the degree of sensitization measured using the double loop electrochemical potentiokinetic reactivation tests can be successfully predicted with the aid of a depletion parameter based on the modelled chromium depletion profiles for heat treatment times covering both the sensitization and de-sensitization or self-healing. Additionally, along with intergranular M23C6 carbides, intragranular M23C6 and Cr2N nitrides that affect the available Cr for grain boundary carbide precipitation were also observed.


2007 ◽  
Vol 55 (16) ◽  
pp. 5401-5407 ◽  
Author(s):  
H. Kokawa ◽  
M. Shimada ◽  
M. Michiuchi ◽  
Z.J. Wang ◽  
Y.S. Sato

1996 ◽  
Vol 232 (2-3) ◽  
pp. 113-118 ◽  
Author(s):  
S. Watanabe ◽  
N. Sakaguchi ◽  
N. Hashimoto ◽  
M. Nakamura ◽  
H. Takahashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document