Effect of Undercalcined MgO and Hybrid Fiber on the Autogenous Shrinkage of Reactive Powder Concrete

Author(s):  
Special Issues Editor
2020 ◽  
Vol 897 ◽  
pp. 41-48 ◽  
Author(s):  
Munther L. Abdul Hussein ◽  
Sallal R. Abid ◽  
Sajjad H. Ali

An experimental program was directed in this study to evaluate the abrasion resistance of reactive powder concrete (RPC) under direct normal impact of water jet. Abrasion and compressive strength specimens were cast from six RPC mixtures using different single and hybrid distributions of 6 mm-length and 15 mm-length micros-steel fibers and 18 mm-length polypropylene fiber. Fixed mix proportions were used for the six RPC mixtures and with fixed total volumetric fiber content of 2.5%. In addition to the RPC mixtures, a normal concrete mixture was prepared for comparison purposes. All specimens were cured in the same conditions and tested at an age of 28 days. The test results showed that abrasion weight losses increase with time at rates that are independent of fiber type and fiber distribution. The results also showed that all RPC mixtures exhibited significantly lower abrasion losses than normal concrete. The lowest percentage abrasion weight losses were recorded for the mixture with pure 15 mm micro-steel, where after 12 testing hours, it was 0.41% of the total weight before testing. On the other hand, the mixture with pure 6 mm micro-steel fiber exhibited the highest percentage abrasion weight loss (0.98%) among the six RPC mixtures. Another conclusion is that the inclusion of polypropylene fiber to compose hybrid fiber distribution with micro-steel fiber led mostly to lower abrasion losses.


2021 ◽  
Author(s):  
Oorkalan A ◽  
Chithra S

Abstract The present study investigates the properties of RPC developed using low cost eco-friendly materials such as pyrogenic silica (PS) and coir pith (CP) fine aggregates. This study investigates the effects of PS as silica fume replacement which is the main constituent for the production of reactive powder concrete which contained coir pith as a fine aggregate replacement instead of quartz sand up to 25%. The use of silica fume increases the particle packing density of RPC but increases the shrinkage phenomenon in RPC due to the minimum w/b ratio adopted. Therefore, in this research PS is used as a partial substitute for SF up to 30% and its effect on the mechanical and durability properties of coir pith containing RPC is studied. The test results showed that the mechanical strength values decreased with an increase in the addition of CP aggregate beyond 5% whereas the decrement in compressive strength was partially reduced when PS is used as silica fume replacement up to a maximum of 30%. The chloride penetration resistance was also improved with increasing PS substitution in RPC containing CP aggregates. The autogenous shrinkage and drying shrinkage were also significantly reduced due to the internal curing ability of the CP aggregates in combination with PS. The development of dense CSH gels from hydration is also evident from low CaO/ SiO2 ratio obtained from the EDS analysis. Hence the combination of PS with CP aggregates can reduce the shrinkage characteristics of RPC thereby providing eco-friendly sustainable concrete at low cost.


2017 ◽  
Vol 10 (3) ◽  
pp. 121-140
Author(s):  
Mohammed Mosleh Salman ◽  
◽  
Husain Khalaf Jarallah ◽  
Shifaa Al-Bayati ◽  
◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 219-232 ◽  
Author(s):  
Xiaomeng Hou ◽  
Pengfei Ren ◽  
Qin Rong ◽  
Wenzhong Zheng ◽  
Yao Zhan

Sign in / Sign up

Export Citation Format

Share Document