Enhancing Everyday Cognition in Older Adults via Working Memory Training and Transcranial Direct Current Stimulation

2016 ◽  
Vol 70 (4_Supplement_1) ◽  
pp. 7011520298p1
Author(s):  
Jaclyn Stephnes ◽  
Marian E. Berryhill
Author(s):  
Jacky Au ◽  
Martin Buschkuehl ◽  
Susanne M. Jaeggi

The aim of this chapter is to contribute to the discussion of the cognitive neuroscience of brain stimulation. In doing so, the authors emphasize work from their own laboratory that focuses both on working memory training and transcranial direct current stimulation. Transcranial direct current stimulation is one of the most commonly used and extensively researched methods of transcranial electrical stimulation. The chapter focuses on implementation of transcranial direct current stimulation to enhance and inform research on working memory training, and not on the underlying mechanisms of transcranial direct current stimulation. Thus, while respecting the intricacies and unknowns of the inner workings of electrical stimulation on the brain, the chapter relies on the premise that transcranial direct current stimulation is able to directly affect the electrophysiological profile of the brain and provides evidence that this in turn can influence behavior given the right parameters.


2017 ◽  
Vol 28 (7) ◽  
pp. 907-920 ◽  
Author(s):  
Jonna Nilsson ◽  
Alexander V. Lebedev ◽  
Anders Rydström ◽  
Martin Lövdén

The promise of transcranial direct-current stimulation (tDCS) as a modulator of cognition has appealed to researchers, media, and the general public. Researchers have suggested that tDCS may increase effects of cognitive training. In this study of 123 older adults, we examined the interactive effects of 20 sessions of anodal tDCS over the left prefrontal cortex (vs. sham tDCS) and simultaneous working memory training (vs. control training) on change in cognitive abilities. Stimulation did not modulate gains from pre- to posttest on latent factors of either trained or untrained tasks in a statistically significant manner. A supporting meta-analysis ( n = 266), including younger as well as older individuals, showed that, when combined with training, tDCS was not much more effective than sham tDCS at changing working memory performance ( g = 0.07, 95% confidence interval, or CI = [−0.21, 0.34]) and global cognition performance ( g = −0.01, 95% CI = [−0.29, 0.26]) assessed in the absence of stimulation. These results question the general usefulness of current tDCS protocols for enhancing the effects of cognitive training on cognitive ability.


2014 ◽  
Vol 26 (11) ◽  
pp. 2443-2454 ◽  
Author(s):  
Lauren L. Richmond ◽  
David Wolk ◽  
Jason Chein ◽  
Ingrid R. Olson

Studies attempting to increase working memory (WM) capacity show promise in enhancing related cognitive functions but have also raised criticism in the broader scientific community given the inconsistent findings produced by these studies. Transcranial direct current stimulation (tDCS) has been shown to enhance WM performance in a single session [Fregni, F., Boggio, P., Nitsche, M., Bermpohl, F., Anatal, A., Feredoes, E., et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 166, 23–30, 2005]; however, the extent to which tDCS might enhance learning on a WM training regime and the extent to which learning gains might transfer outside the training task remains largely unknown. To this end, participants engaged in an adaptive WM training task [previously utilized in Richmond, L., Morrison, A., Chein, J., & Olson, I. Working memory training and transfer in older adults. Psychology & Aging, 26, 813–822, 2011; Chein, J., & Morrison, A. Expanding the mind's workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193–199, 2010] for 10 sessions over 2 weeks, concurrent with either active or sham stimulation of dorsolateral pFC. Before and after training, a battery of tests tapping domains known to relate to WM abilities was administered. Results show that tDCS enhanced learning on the verbal portion of the training task by 3.65 items. Furthermore, tDCS was shown to enhance near transfer to other untrained WM tasks in comparison with a no-contact control group. These results lend support to the idea that tDCS might bolster training and transfer gains in populations with compromised WM abilities.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Vinicius Souza dos Souza dos Santos ◽  
Maxciel Zortea ◽  
Rael Lopes Alves ◽  
Cátia Cilene dos Santos Naziazeno ◽  
Júlia Schirmer Saldanha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document