Creating Space Through Imagination and Action : Space and the Body in Deuteronomy 6:4–9

Keyword(s):  
The Body ◽  
2021 ◽  
Vol 15 ◽  
Author(s):  
Yann Coello ◽  
Alice Cartaud

The peripersonal space is an adaptive and flexible interface between the body and the environment that fulfills a dual-motor function: preparing the body for voluntary object-oriented actions to interact with incentive stimuli and preparing the body for defensive responses when facing potentially harmful stimuli. In this position article, we provide arguments for the sensorimotor rooting of the peripersonal space representation and highlight the variables that contribute to its flexible and adaptive characteristics. We also demonstrate that peripersonal space represents a mediation zone between the body and the environment contributing to not only the control of goal-directed actions but also the organization of social life. The whole of the data presented and discussed led us to the proposal of a new theoretical framework linking the peripersonal action space and the interpersonal social space and we highlight how this theoretical framework can account for social behaviors in populations with socio-emotional deficits.


2020 ◽  
Vol 43 ◽  
Author(s):  
David Spurrett

Abstract Comprehensive accounts of resource-rational attempts to maximise utility shouldn't ignore the demands of constructing utility representations. This can be onerous when, as in humans, there are many rewarding modalities. Another thing best not ignored is the processing demands of making functional activity out of the many degrees of freedom of a body. The target article is almost silent on both.


Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Author(s):  
J. J. Paulin

Movement in epimastigote and trypomastigote stages of trypanosomes is accomplished by planar sinusoidal beating of the anteriorly directed flagellum and associated undulating membrane. The flagellum emerges from a bottle-shaped depression, the flagellar pocket, opening on the lateral surface of the cell. The limiting cell membrane envelopes not only the body of the trypanosome but is continuous with and insheathes the flagellar axoneme forming the undulating membrane. In some species a paraxial rod parallels the axoneme from its point of emergence at the flagellar pocket and is an integral component of the undulating membrane. A portion of the flagellum may extend beyond the anterior apex of the cell as a free flagellum; the length is variable in different species of trypanosomes.


Sign in / Sign up

Export Citation Format

Share Document