Neuron-glia relationship during the early postembryonic development of the nervous system in some oligochaetes

Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.

Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


1977 ◽  
Vol 23 (1) ◽  
pp. 315-324
Author(s):  
N.J. Lane ◽  
L.S. Swales ◽  
N.J. Abbott

Central neural connectives and peripheral nerves from the crayfish Procambarus clarkii were incubated in 5 mM lanthanum solutions in physiological saline, for periods from 15 min to 2 h. The tracer only rarely reaches the axon surfaces in the perineurium-ensheathed connectives, penetrating the elaborate perineurial layer slowly. In peripheral nerves, on the other hand, where the perineurium is extermely attenuated and interrupted by open extracellular clefts, inward movement of lanthanum to the axon surfaces occurs readily. When the perineurial layer of the neural connectives is removed by ‘desheathing’, penetration of the tracer to the level of the axolemma occurs rapidly, implicating the perineurium as the major site of restriction of entry of large ions and exogenous molecules. This conclusion is discussed in relation to recent electrophysiological studies on K+ movements. In both peripheral nerves and desheathed connectives, the transcellular tubular lattice system present in crustacean glial cells appears to serve as a route for the entry of tracer to the axon surfaces, and is more direct than the long and complex extracellular pathway formed by the interdigitations of the extensive glial cell processes.


2013 ◽  
Vol 126 (17) ◽  
pp. 3823-3834 ◽  
Author(s):  
C. E. Holcroft ◽  
W. D. Jackson ◽  
W.-H. Lin ◽  
K. Bassiri ◽  
R. A. Baines ◽  
...  

Science ◽  
2014 ◽  
Vol 345 (6192) ◽  
pp. 82-87 ◽  
Author(s):  
Vyacheslav Dyachuk ◽  
Alessandro Furlan ◽  
Maryam Khatibi Shahidi ◽  
Marcela Giovenco ◽  
Nina Kaukua ◽  
...  

The peripheral autonomic nervous system reaches far throughout the body and includes neurons of diverse functions, such as sympathetic and parasympathetic. We show that the parasympathetic system in mice—including trunk ganglia and the cranial ciliary, pterygopalatine, lingual, submandibular, and otic ganglia—arise from glial cells in nerves, not neural crest cells. The parasympathetic fate is induced in nerve-associated Schwann cell precursors at distal peripheral sites. We used multicolor Cre-reporter lineage tracing to show that most of these neurons arise from bi-potent progenitors that generate both glia and neurons. This nerve origin places cellular elements for generating parasympathetic neurons in diverse tissues and organs, which may enable wiring of the developing parasympathetic nervous system.


Author(s):  
Sujata Basu ◽  
Manisha Singh ◽  
Mansi Verma ◽  
Rachana R.

The glial cells along with cells of hematopoietic origin and microvascular endothelia work together to maintain the normal development and/or functioning of the nervous system. Disruption in functional coordination among these cells interrupts the efficiency of the nervous system, leading to neurodegeneration. Various proteins in the nerve cells maintain the normal signaling mechanism with these cells and throughout the body. Structural/functional disorganization of these proteins causes neurodegenerative disorders. The molecular mechanisms involved in these phenomena are yet to be explored extensively from therapeutic perspectives. Through this chapter, the authors have elaborated on less known protein Bcl-2 associated athanogene 3 (BAG3) involved in neurodegeneration. They have explored BAG3 protein and its role in neurodegeneration, protein homeostasis, its mechanism of action, its uses as a drug target, and its uses as a possible diagnostic marker of neurodegeneration.


2015 ◽  
Vol 49 (5) ◽  
pp. 459-466
Author(s):  
V. N. Peskov ◽  
M. V. Franchuk ◽  
N. S. Atamas’

The paper explores the possibility of implementing the methods of multivariate statistics into studying the growth processes on the example of song thrushes, Turdus philomelos, Brehm, 1831, during their postnatal development as nestlings. The developmental trends in 12 morphometric traits in T. philomelos in the course of postembryogenesis is shown to be explained for 99.3 % by the first two principal components (PC). The major developmental trend (PC1 - 95.1 %) is defined by a highly correlative though irregular growth of linear forms of nestlings’ body parts, the two other trends relate to the body proportion formation (PC2 - 4.2 %). Th ere have been discovered the two growth stages: (1) of fast growth: from birth up to the 8th day with relative increment in growth of traits equal in average to 91.9 %, and (2) of slow growth: from the 8th to the 14th day, characterized by a reduction of an average growth increment being five times lower, and by intense feather cover development. There have been demonstrated that all the variables can be structured into the four groups or growth correlation pleiads (groups comprising similarly growing traits). The growth is shown to be most specific for the song thrush’s body, head and bill, being a part of a single pleiad. While still forming the three different growth pleiads the properties of the bird’s wing, leg, the 3rd and the 4th toes differ significantly less in respect to their growth characteristics.


Author(s):  
F. L. Azizova ◽  
U. A. Boltaboev

The features of production factors established at the main workplaces of shoe production are considered. The materials on the results of the study of the functional state of the central nervous system of women workers of shoe production in the dynamics of the working day are presented. The level of functional state of the central nervous system was determined by the speed of visual and auditory-motor reactions, installed using the universal device chronoreflexometer. It was revealed that in the body of workers of shoe production there is an early development of inhibitory processes in the central nervous system, which is expressed in an increase in the number of errors when performing tasks on proofreading tables. It was found that the most pronounced shift s in auditory-motor responses were observed in professional groups, where higher levels of noise were registered in the workplace. The correlation analysis showed a close direct relationship between the growth of mistakes made in the market and the decrease in production. An increase in the time spent on the task indicates the occurrence and growth of production fatigue.Funding. The study had no funding.Conflict of interests. The authors declare no conflict of interests.


Author(s):  
Natalya L. Yakimova ◽  
Vladimir A. Pankov ◽  
Aleksandr V. Lizarev ◽  
Viktor S. Rukavishnikov ◽  
Marina V. Kuleshova ◽  
...  

Introduction. Vibration disease continues to occupy one of the leading places in the structure of professional pathology. In workers after the termination of contact with vibration generalization and progression of violations in an organism is noted. The pathogenetic mechanisms of the progredient course of disturbances in the nervous system in the post-contact period of vibration exposure remain insufficiently studied.The aim of the study was to test an experimental model of vibration exposure to assess the neurophysiological and morphological effects of vibration in rats in the dynamics of the post-contact period.Materials and methods. The work was performed on 168 white male outbred rats aged 3 months weighing 180–260 g. The vibration effect was carried out on a 40 Hz vibrating table for 60 days 5 times a week for 4 hours a day. Examination of animals was performed after the end of the physical factor, on the 30th, 60th and 120th day of the post-contact period. To assess the long-term neurophysiological and morphofunctional effects of vibration in rats, we used indicators of behavioral reactions, bioelectric activity of the somatosensory zone of the cerebral cortex, somatosensory and visual evoked potentials, parameters of muscle response, morphological parameters of nervous tissue.Results. In the dynamics of the post-contact period observed the preservation of violations of tentatively research, motor and emotional components of behavior. In the Central nervous system instability of activity of rhythms of an electroencephalogram, decrease in amplitude of visual evoked potentials, lengthening of latency of somatosensory evoked potentials, decrease in total number of normal neurons and astroglia is established. In the peripheral nervous system remained changes in indicators: increasing duration and latency, reducing the amplitude of the neuromuscular response.Conclusions: The experimental model allows us to study the long-term neurophysiological and morphological effects of vibration on the body. The formation and preservation of changes in behavioral activity, neurophysiological and morphological effects of vibration from the 30th to the 120th day of the post-contact period were confirmed.


2018 ◽  
Author(s):  
Pedro Silva Moreira ◽  
Pedro Chaves ◽  
Nuno Dias ◽  
Patrício Costa ◽  
Pedro Rocha Almeida

Background: The search for autonomic correlates of emotional processing has been a matter of interest for the scientific community with the goal of identifying the physiological basis of emotion. Despite an extensive state-of-the-art exploring the correlates of emotion, there is no absolute consensus regarding how the body processes an affective state.Objectives: In this work, we aimed to aggregate the literature of psychophysiological studies in the context of emotional induction. Methods: For this purpose, we conducted a systematic review of the literature and a meta-analytic investigation, comparing different measures from the electrodermal, cardiovascular, respiratory and facial systems across emotional categories/dimensions. Two-hundred and ninety-one studies met the inclusion criteria and were quantitatively pooled in random-effects meta-analytic modelling. Results: Heart rate and skin conductance level were the most reported psychophysiological measures. Overall, there was a negligible differentiation between emotional categories with respect to the pooled estimates. Of note, considerable amount of between-studies’ heterogeneity was found in the meta-analytic aggregation. Self-reported ratings of emotional arousal were found to be associated with specific autonomic-nervous system (ANS) indices, particularly with the variation of the skin conductance level. Conclusions: Despite this clear association, there is still a considerable amount of unexplained variability that raises the need for more fine-grained analysis to be implemented in future research in this field.


Sign in / Sign up

Export Citation Format

Share Document