scholarly journals Characteristics of Friction Noise with Changes of the Natural Frequencies in the Reciprocating Motion

Author(s):  
Hoil Choi ◽  
Jaeyoung Kang
1996 ◽  
Vol 63 (3) ◽  
pp. 610-620
Author(s):  
E. S. Edelstein ◽  
J. J. Blech

Cylindrical and spherical parts, clamped in mechanical systems, rotate when the system is subjected to a dynamic reciprocating environmental condition. This rotation is a combination of the clamped part high “receptance” magnification near its natural frequencies, with frictional stick-slip at the clamping contact areas, when the system is excited to a reciprocating motion not collinear with the preloading direction. Such rotation may result in wear and fatigue failures in those systems, due to the rotation and the slip motion involved. Three cases are analyzed: cylindrical pins in hinges, balls in ball bearings, and spherical vessels clamped between spherical cavities.


1996 ◽  
Vol 63 (3) ◽  
pp. 683-691 ◽  
Author(s):  
E. S. Edelstein ◽  
J. J. Blech

A perfect spherical ball, symmetrically clamped between two identical surfaces, was found to rotate due to linear reciprocating excitation. A plausible theoretical explanation of this phenomenon follows. The rotation of the ball is a combination of the magnification of the dynamic response of the ball in the clamping system, near its natural frequencies, with frictional stick-slip at the contact areas. The ball rotates when the system is excited by a reciprocating motion not collinear with the preloading direction. The theoretical analysis of such rotation was corroborated by testing. This rotation may result in wear because of the slip motion involved. This work is focused on balls clamped between spherical (concave) surfaces. However, such rotation can also be developed in cylindrical hinges and rolling bearings, naturally loaded between a pair of surfaces. Furthermore, rotation of balls may develop in a nonrotating ball bearing under dynamic environmental conditions.


1977 ◽  
Vol 5 (4) ◽  
pp. 202-225 ◽  
Author(s):  
G. R. Potts ◽  
C. A. Bell ◽  
L. T. Charek ◽  
T. K. Roy

Abstract Natural frequencies and vibrating motions are determined in terms of the material and geometric properties of a radial tire modeled as a thin ring on an elastic foundation. Experimental checks of resonant frequencies show good agreement. Forced vibration solutions obtained are shown to consist of a superposition of resonant vibrations, each rotating around the tire at a rate depending on the mode number and the tire rotational speed. Theoretical rolling speeds that are upper bounds at which standing waves occur are determined and checked experimentally. Digital Fourier transform, transfer function, and modal analysis techniques used to determine the resonant mode shapes of a radial tire reveal that antiresonances are the primary transmitters of vibration to the tire axle.


Author(s):  
Джугурян Т.Г. ◽  
Марчук В.І. ◽  
Марчук І. В.

During the design of operations of centerless intermittent grinding of surfaces there is a need to identify the natural frequencies of oscillations of the elements of the technological system of grinding. The method of calculation of rigidity, vibration resistance and forced oscillations of the elements of the circular grinding machine is offered in the article. Carrying out of experimental researches of rigidity of elastic system of the SASL 5AD grinding machine. We conducted preliminary experimental studies to measure the oscillations of various elements of the elastic system of the SASL 5AD grinding machine in the horizontal plane by piezoelectric sensors during grinding with continuous and discontinuous circles with different geometric parameters.


1987 ◽  
Author(s):  
James H. Williams ◽  
Nagem Jr. ◽  
Raymond J.

Sign in / Sign up

Export Citation Format

Share Document