Effect of Inclination Angles on Motor Vibration and Structure-borne Noise Characteristics

Author(s):  
Hoyeon Jeong ◽  
Heemo Goo
2020 ◽  
pp. 116-122
Author(s):  
Emre Öztürk ◽  
Mehmet Aktaş ◽  
Tunç Şenyüz

The purpose of this research is to reach good correlation between sun load simulation and solar focusing test for exterior automotive lighting products. Light coming from sun is highly collimated (parallel rays) and focusable from lenses with concave structure. Focusing incidence leads to a hot spot on lens surrounding plastic parts which may cause melting failures at high temperature zones. Sun load simulation is performing to eliminate risk of discoloration, deformation, out gassing, coating failures and fire with prolonged exposure from field. Irradiance values in W/m2 defined in simulation as heat source depending of an angle of incidence of the sun radiation. At first step, simulation is performing with 5 degree intervals to define the critical zones then intervals decreased to 2 degree to detect the critical azimuth and inclination angles. Critical azimuth and inclination angles is checking with ray trace analysis to check the bouncing of sun rays and possible solution to eliminate focuses with design solutions. After numerical analysis to release and validate the automotive lighting products regarding the sun load test, measurement with first parts is necessary. Measurement is performing for all critical angles which have been detected at simulation with thermal camera under ultra high-collimation solar simulator. Measured temperatures are settled according to environment conditions and correlation is checking with simulations.


2019 ◽  
Author(s):  
Rainer Schädler ◽  
◽  
Dominic Hänni ◽  
Anestis Kalfas ◽  
Reza Abhari ◽  
...  

1998 ◽  
Vol 22 (S_3_PMRS_98) ◽  
pp. S3_5-8
Author(s):  
Y. Hirayama ◽  
Y. Honda ◽  
K. Ito ◽  
T. Takeuchi ◽  
M. Futamoto

1995 ◽  
Vol 115 (2) ◽  
pp. 99-106
Author(s):  
Keiichi Uchimura ◽  
Michiharu Shoji ◽  
Tairo Itho ◽  
Jen-Shih Chang

2018 ◽  
Vol 60 (4) ◽  
pp. 393-398
Author(s):  
Murat Yavuz Solmaz ◽  
Ismail Hakki Sanliturk ◽  
Aydin Turgut ◽  
Serkan Dundar ◽  
Tolga Topkaya

2002 ◽  
Vol 97 ◽  
pp. 563-568 ◽  
Author(s):  
Paul Jursinic ◽  
Robert Prost ◽  
Christopher Schultz

Object. The authors report on a new head coil into which the Leksell aluminum localization frame can be easily and securely mounted. Mechanically, the head coil interferes little with the patient. Methods. The head coil, which is for magnetic resonance (MR) imaging, is a 12-element quadrature transmitand-receive high-pass birdcage coil with a nominal operation frequency (63.86 MHz). The coil was built into a plastic housing. This new head coil minimizes patient motion and provides a 20% increase in signal/noise ratios compared with standard head coils. An MR image test phantom was mounted in the coil and this allowed quantification of image distortion due to inhomogeneities in the main magnetic field, nonlinearity in the gradient field, and paramagnetism of the aluminum headframe. There were no significant differences in geometric distortion between the new head coil and the standard coil. Conclusions. The new head coil has advantages for reducing patient movement artifacts and has a better signal/noise ratio with no reduction in geometric accuracy.


2020 ◽  
Vol 68 (3) ◽  
pp. 209-225
Author(s):  
Masaaki Mori ◽  
Kunihiko Ishihara

An aerodynamic sound generated by a flow inside a duct is one of the noise pro- blems. Flows in ducts with uneven surfaces such as grooves or cavities can be seen in various industrial devices and industrial products such as air-conditioning equipment in various plants or piping products. In this article, we have performed experiments and simulations to clarify acoustic and flow-induced sound characteris- tics of L-shaped duct with a shallow cavity installed. The experiments and simula- tions were performed under several inflow velocity conditions. The results show that the characteristics of the flow-induced sound in the duct are strongly affected by the acoustic characteristics of the duct interior sound field and the location of the shallow cavity. Especially, it was found that the acoustic characteristics were af- fected by the location of the shallow cavity in the frequency range between 1000 Hz and 1700 Hz.


Sign in / Sign up

Export Citation Format

Share Document