A Fog Computing based Smart Grid Cloud Data Security

2016 ◽  
Vol 10 (6) ◽  
pp. 1-6 ◽  
Author(s):  
Ahmad Almadhor
2019 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
Md. Hussain ◽  
M.M. Beg

The fast-paced development of power systems necessitates the smart grid (SG) to facilitate real-time control and monitoring with bidirectional communication and electricity flows. In order to meet the computational requirements for SG applications, cloud computing (CC) provides flexible resources and services shared in network, parallel processing, and omnipresent access. Even though CC model is considered to be efficient for SG, it fails to guarantee the Quality-of-Experience (QoE) requirements for the SG services, viz. latency, bandwidth, energy consumption, and network cost. Fog Computing (FC) extends CC by deploying localized computing and processing facilities into the edge of the network, offering location-awareness, low latency, and latency-sensitive analytics for mission critical requirements of SG applications. By deploying localized computing facilities at the premise of users, it pre-stores the cloud data and distributes to SG users with fast-rate local connections. In this paper, we first examine the current state of cloud based SG architectures and highlight the motivation(s) for adopting FC as a technology enabler for real-time SG analytics. We also present a three layer FC-based SG architecture, characterizing its features towards integrating massive number of Internet of Things (IoT) devices into future SG. We then propose a cost optimization model for FC that jointly investigates data consumer association, workload distribution, virtual machine placement and Quality-of-Service (QoS) constraints. The formulated model is a Mixed-Integer Nonlinear Programming (MINLP) problem which is solved using Modified Differential Evolution (MDE) algorithm. We evaluate the proposed framework on real world parameters and show that for a network with approximately 50% time critical applications, the overall service latency for FC is nearly half to that of cloud paradigm. We also observed that the FC lowers the aggregated power consumption of the generic CC model by more than 44%.


2021 ◽  
Vol 1065 (1) ◽  
pp. 012044
Author(s):  
Dr. P. Maragathavalli ◽  
S. Atchaya ◽  
N. Kaliyaperumal ◽  
S. Saranya

2021 ◽  
Vol 13 (5) ◽  
pp. 2549
Author(s):  
Shahid Mahmood ◽  
Moneeb Gohar ◽  
Jin-Ghoo Choi ◽  
Seok-Joo Koh ◽  
Hani Alquhayz ◽  
...  

Smart Grid (SG) infrastructure is an energy network connected with computer networks for communication over the internet and intranets. The revolution of SGs has also introduced new avenues of security threats. Although Digital Certificates provide countermeasures, however, one of the issues that exist, is how to efficiently distribute certificate revocation information among Edge devices. The conventional mechanisms, including certificate revocation list (CRL) and online certificate status protocol (OCSP), are subjected to some limitations in energy efficient environments like SG infrastructure. To address the aforementioned challenges, this paper proposes a scheme incorporating the advantages and strengths of the fog computing. The fog node can be used for this purpose with much better resources closer to the edge. Keeping the resources closer to the edge strengthen the security aspect of smart grid networks. Similarly, a fog node can act as an intermediate Certification Authority (CA) (i.e., Fog Node as an Intermediate Certification Authority (FONICA)). Further, the proposed scheme has reduced storage, communication, processing overhead, and latency for certificate verification at edge devices. Furthermore, the proposed scheme reduces the attack surface, even if the attacker becomes a part of the network.


Sign in / Sign up

Export Citation Format

Share Document