scholarly journals Fog Computing for Internet of Things (IoT)-Aided Smart Grid Architectures

2019 ◽  
Vol 3 (1) ◽  
pp. 8 ◽  
Author(s):  
Md. Hussain ◽  
M.M. Beg

The fast-paced development of power systems necessitates the smart grid (SG) to facilitate real-time control and monitoring with bidirectional communication and electricity flows. In order to meet the computational requirements for SG applications, cloud computing (CC) provides flexible resources and services shared in network, parallel processing, and omnipresent access. Even though CC model is considered to be efficient for SG, it fails to guarantee the Quality-of-Experience (QoE) requirements for the SG services, viz. latency, bandwidth, energy consumption, and network cost. Fog Computing (FC) extends CC by deploying localized computing and processing facilities into the edge of the network, offering location-awareness, low latency, and latency-sensitive analytics for mission critical requirements of SG applications. By deploying localized computing facilities at the premise of users, it pre-stores the cloud data and distributes to SG users with fast-rate local connections. In this paper, we first examine the current state of cloud based SG architectures and highlight the motivation(s) for adopting FC as a technology enabler for real-time SG analytics. We also present a three layer FC-based SG architecture, characterizing its features towards integrating massive number of Internet of Things (IoT) devices into future SG. We then propose a cost optimization model for FC that jointly investigates data consumer association, workload distribution, virtual machine placement and Quality-of-Service (QoS) constraints. The formulated model is a Mixed-Integer Nonlinear Programming (MINLP) problem which is solved using Modified Differential Evolution (MDE) algorithm. We evaluate the proposed framework on real world parameters and show that for a network with approximately 50% time critical applications, the overall service latency for FC is nearly half to that of cloud paradigm. We also observed that the FC lowers the aggregated power consumption of the generic CC model by more than 44%.

2018 ◽  
Vol 7 (3) ◽  
pp. 1615 ◽  
Author(s):  
Gohar Rahman ◽  
Chuah Chai Wen

The internet of things originates a world where on daily basis objects can join the internet and interchange information and in addition process, store, gather them from the nearby environment, and effectively mediate on it. A remarkable number of services might be imagined by abusing the internet of things. Fog computing which is otherwise called edge computing was introduced in 2012 as a considered is a prioritized choice for the internet of things applications. As fog computing extend services of cloud near to the edge of the network and make possible computations, communications, and storage services in proximity to the end user. Fog computing cannot only provide low latency, location awareness but also enhance real-time applications, quality of services, mobility, security and privacy in the internet of things applications scenarios. In this paper, we will summarize and overview fog computing model architecture, characteristic, similar paradigm and various applications in real-time scenarios such as smart grid, traffic control system and augmented reality. Finally, security challenges are presented.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3715
Author(s):  
Ioan Ungurean ◽  
Nicoleta Cristina Gaitan

In the design and development process of fog computing solutions for the Industrial Internet of Things (IIoT), we need to take into consideration the characteristics of the industrial environment that must be met. These include low latency, predictability, response time, and operating with hard real-time compiling. A starting point may be the reference fog architecture released by the OpenFog Consortium (now part of the Industrial Internet Consortium), but it has a high abstraction level and does not define how to integrate the fieldbuses and devices into the fog system. Therefore, the biggest challenges in the design and implementation of fog solutions for IIoT is the diversity of fieldbuses and devices used in the industrial field and ensuring compliance with all constraints in terms of real-time compiling, low latency, and predictability. Thus, this paper proposes a solution for a fog node that addresses these issues and integrates industrial fieldbuses. For practical implementation, there are specialized systems on chips (SoCs) that provides support for real-time communication with the fieldbuses through specialized coprocessors and peripherals. In this paper, we describe the implementation of the fog node on a system based on Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC.


Proceedings ◽  
2018 ◽  
Vol 2 (19) ◽  
pp. 1257
Author(s):  
Gabriel Eggly ◽  
Mariano Finochietto ◽  
Emmanouil Dimogerontakis ◽  
Rodrigo Santos ◽  
Javier Orozco ◽  
...  

Internet of Things (IoT) have become a hot topic since the official introduction of IPv6. Research on Wireless Sensors Networks (WSN) move towards IoT as the communication platform and support provided by the TCP/UDP/IP stack provides a wide variety of services. The communication protocols need to be designed in such a way that even simple microcontrollers with small amount of memory and processing speed can be interconnected in a network. For this different protocols have been proposed. The most extended ones, MQTT and CoAP, represent two different paradigms. In this paper, we present a CoAP extension to support soft real-time communications among sensors, actuators and users. The extension facilitates the instrumentation of applications oriented to improve the quality of life of vulnerable communities contributing to the social good.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Prasad M. Pujar ◽  
Harish H. Kenchannavar ◽  
Raviraj M. Kulkarni ◽  
Umakant P. Kulkarni

AbstractIn this paper, an attempt has been made to develop a statistical model based on Internet of Things (IoT) for water quality analysis of river Krishna using different water quality parameters such as pH, conductivity, dissolved oxygen, temperature, biochemical oxygen demand, total dissolved solids and conductivity. These parameters are very important to assess the water quality of the river. The water quality data were collected from six stations of river Krishna in the state of Karnataka. River Krishna is the fourth largest river in India with approximately 1400 km of length and flows from its origin toward Bay of Bengal. In our study, we have considered only stretch of river Krishna flowing in state of Karnataka, i.e., length of about 483 km. In recent years, the mineral-rich river basin is subjected to rapid industrialization, thus polluting the river basin. The river water is bound to get polluted from various pollutants such as the urban waste water, agricultural waste and industrial waste, thus making it unusable for anthropogenic activities. The traditional manual technique that is under use is a very slow process. It requires staff to collect the water samples from the site and take them to the laboratory and then perform the analysis on various water parameters which is costly and time-consuming process. The timely information about water quality is thus unavailable to the people in the river basin area. This creates a perfect opportunity for swift real-time water quality check through analysis of water samples collected from the river Krishna. IoT is one of the ways with which real-time monitoring of water quality of river Krishna can be done in quick time. In this paper, we have emphasized on IoT-based water quality monitoring by applying the statistical analysis for the data collected from the river Krishna. One-way analysis of variance (ANOVA) and two-way ANOVA were applied for the data collected, and found that one-way ANOVA was more effective in carrying out water quality analysis. The hypotheses that are drawn using ANOVA were used for water quality analysis. Further, these analyses can be used to train the IoT system so that it can take the decision whenever there is abnormal change in the reading of any of the water quality parameters.


2020 ◽  
Vol 1 (1) ◽  
pp. 7-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data.


Author(s):  
Aarti Rani ◽  

Air Monitoring becomes a systematic approach for sensitivity and finding out the circumstances of the atmosphere. The major concern of air quality monitoring is to measure the concentration of pollution and other important parameter related to the contamination and provides information in real-time to make decisions at right time to cure lives and save the environment. This paper proposes an Architectural Framework for the air quality monitoring system based on Internet-of-Things (IoT) and via Fog computing techniques with novel methods to obtain real-time and accurate measurements of conventional air quality monitoring. IoT-based real-time air pollution monitoring system is projected to at any location and stores the measured value of various pollutants over a web server with the Internet. It can facilitate the process and filter data near the end of the IoT nodes in a concurrent manner and improving the Latency issue with the quality of services.


2020 ◽  
Vol 1 (2) ◽  
pp. 6-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data


2019 ◽  
Vol 8 (4) ◽  
pp. 1874-1878

Supervisory control and data acquisition (SCADA) is one of the existing phase measurement system provides the real-time control of power switching relays, attains information of the system status. Usually it accomplishes three-phase measurement in distributed network of smart grid through ample power quality measurement of voltage, current, and mostly the total harmonic distortion. However, the investigation of the paper suggests that SCADA delivers the updates of the grid information in times with the communication delays of 15 seconds. Of course, these timing delays can be higher, since it varies on the system complexity. Therefore, this communication delays too high in terms of synchronization, fault monitoring, and the measurement of the system variables in real-time. Therefore, this study covers the communication framework and its protocols of the smart grid application. To make the study more concise, this paper also assessed the delay of IEEE 1588 and IEEE C37.118 for the synchronization performance measurement. Moreover, this paper also includes the performance analysis of the existing the intelligent system and its protocols for smart grid application.


Sign in / Sign up

Export Citation Format

Share Document