Experimental Investigation Of Potentiality Of Nano fluids In Enhancing The Performance Of Hybrid Pvt System

2021 ◽  
Vol 23 (04) ◽  
pp. 393-405
Author(s):  
Kunwar Faisal Ali Khan ◽  
◽  
Zafar Alam ◽  
Syed Mohd Yahya ◽  
◽  
...  

The power from sun caught by earth is nearby 1.8 × 1011MW which is obtained by utilizing sun’s energy by photovoltaic cells appears to be a good substitute then the conventional fuels. The efficiency of the system declines due to the heat confined in photovoltaic cells throughout the operation [1]. Enhancing the efficiency of Sun power generation by engaging nanofluids in PV/T systems is achieved by recent improvement in the nanotechnology field. In our work Nano fluids are employed as coolants to lower the PV panel temperatures and thus the system efficiency increases. This study comprehensively analyses the effectiveness of Zinc nanoparticles in different base fluids i.e. water, water (75%) & ethylene glycol (25%) and water (75%) & propylene glycol (25%) to enhance the electrical and thermal efficiency of the PV/T system. Other parameters like flow rate, concentration of nanoparticles by volume and sonication time are kept constant throughout the experiment. The experiments were performed on an indoor setup and to replicate the solar irradiance a solar simulator was engaged as per previous year’s metrological data. It is perceived that the extreme change in electrical efficiency is 2.6% and maximum change in thermal efficiency observed is 31% as compared to conventional system.

2013 ◽  
Vol 467 ◽  
pp. 522-527 ◽  
Author(s):  
Sakhr M. Sultan ◽  
M.I. Fadhel ◽  
S.A. Alkaff

A new configuration of Photovoltaic/Thermal Collector (PV/T) system has been designed and proposed. The (PV/T) consists of certain layers which are the glass, air gap, PV panel, absorber plate and insulating material layer. In this paper, a glazed (PV/T) solar collector using the spiral flow design absorber has been studied under different Malaysian meteorological conditions. The Performance of outlet water temperature, thermal, electrical and combined (PV/T) efficiencies under two different Malaysian climatic conditions (sunny and cloudy) days have been evaluated. Based on the simulation results, the maximum hourly thermal efficiency of sunny day is 61.3%, while the maximum hourly thermal efficiency of cloudy day is 59.6%. The electrical efficiencies for typical sunny and cloudy days are 12.89%, 13.03%, respectively. The maximum hourly combined (PV/T) efficiency for typical sunny and cloudy days are 74.1% and 72.63%, respectively. As seen from the results, the proposed (PV/T) system design is applicable to be used under different Malaysian climate conditions.


2021 ◽  
Vol 11 (4) ◽  
pp. 1964
Author(s):  
Daniele Colarossi ◽  
Eleonora Tagliolini ◽  
Paolo Principi ◽  
Roberto Fioretti

This work presents an adjustable large-scale solar simulator based on metal halide lamps. The design procedure is described with regards to the construction and spatial arrangement of the lamps and the designed optical system. Rotation and translation of the lamp array allow setting the direction and the intensity of the luminous flux on the horizontal plane. To validate the built model, irradiance nonuniformity and temporal instability tests were carried out assigning Class A, B, or C for each test, according to the International Electrotechnical Commission (IEC) standards requirements. The simulator meets the Class C standards on a 200 × 90 cm test plane, Class B on 170 × 80 cm, and Class A on 80 × 40 cm. The temporal instability returns Class A results for all the measured points. Lastly, a PV panel is characterized by tracing the I–V curve under simulated radiation, under outdoor natural sunlight, and with a numerical method. The results show a good approximation.


2020 ◽  
Vol 12 (22) ◽  
pp. 9520
Author(s):  
M. Imtiaz Hussain ◽  
Jun-Tae Kim

This study summarizes the performance of a photovoltaic/thermal (PV/T) system integrated with a glass-to-PV backsheet (PVF film-based backsheet) and glass-to-glass photovoltaic (PV) cells protections. A dual-fluid heat exchanger is used to cool the PV cells in which water and air are operated simultaneously. The proposed PV/T design brings about a higher electric output while producing sufficient thermal energy. A detailed numerical study was performed by calculating real-time heat transfer coefficients. Energy balance equations across the dual-fluid PV/T system were solved using an ordinary differential equation (ODE) solver in MATLAB software. The hourly and annual energy and exergy variations for both configurations were evaluated for Cheonan City, Korea. In the case of a PV/T system with a glass-to-glass configuration, a larger heat exchange area causes the extraction of extra solar heat from the PV cells and thus improving the overall efficiency of the energy transfer. Results depict that the annual electrical and total thermal efficiencies with a glass-to-glass configuration were found to be 14.31% and 52.22%, respectively, and with a glass-to-PV backsheet configuration, the aforementioned values reduced to 13.92% and 48.25%, respectively. It is also observed that, with the application of a dual-fluid heat exchanger, the temperature gradient across the PV panel is surprisingly reduced.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hongbing Chen ◽  
Xilin Chen ◽  
Sai Chu ◽  
Lei Zhang ◽  
Yaxuan Xiong

Several studies have found that the decrease of photovoltaic (PV) cell temperature would increase the solar-to-electricity conversion efficiency. Water type PV/thermal (PV/T) system was a good choice but it could become freezing in cold areas of Northern China. This paper proposed a simple combination of common-used PV panel and heat pipe, called PV-heat pipe (PV-HP) solar collector, for both electrical and thermal energy generation. A simplified one-dimensional steady state model was developed to study the electrical and thermal performance of the PV-HP solar collector under different solar radiations, water flow rates, and water temperatures at the inlet of manifold. A testing rig was conducted to verify the model and the testing data matched very well with the simulation values. The results indicated that the thermal efficiency could be minus in the afternoon. The thermal and electrical efficiencies decreased linearly as the inlet water temperature and water flow rate increased. The thermal efficiency increased while the electrical efficiency decreased linearly as the solar radiation increased.


2014 ◽  
Vol 488-489 ◽  
pp. 1173-1176 ◽  
Author(s):  
Li Qing Tang ◽  
Qun Zhi Zhu

This paper studied the performance of a flowing-over PV/T system with water and Al2O3 nanofluid as the working fluid. The experimental system was built in the outdoors. The parameters of the experiment obtained for processing, analysis, accessing to the electrical efficiency and thermal efficiency. Experimental results show that the flowing-over PV/T system with Al2O3 nanofluid as working fluid has a higher overall efficiency than that with water.


2021 ◽  
Vol 39 (4) ◽  
pp. 1117-1122
Author(s):  
Win Eng Ewe ◽  
Ahmad Fudholi ◽  
Kamaruzzaman Sopian ◽  
Nilofar Asim

This research demonstrates how to develop a novel energy balance equation to investigate heat transmission between the components of a bifacial photovoltaic-thermal (PVT) air heater with a jet plate. The temperature output and efficiency of the system are shown. A greater mass flow rate reduces the exit air temperature and increases the thermal efficiency of the thermal component. Increased sun irradiation raises the output air temperature and thermal efficiency. In terms of electrical efficiency, a greater mass flow rate reduces the temperature of the PV panel while increasing electrical efficiency. On the other hand, higher solar irradiation raises the temperature of the PV panel, lowering its electrical efficiency. The maximum thermal efficiency of BPVTJPR is 51.09% under the circumstances of 12 PV cells with a packing factor of 0.66, a jet plate reflector with 36 holes, 900 W/m2 solar irradiances, and a mass flow rate of 0.035 kg/s. The maximum electrical efficiency of BPVTJPR is 10.73% under the circumstances of 12 PV cells with a packing factor of 0.66, a jet plate reflector with 36 holes, 700 W/m2 solar irradiances, and a mass flow rate of 0.035 kg/s.


Sign in / Sign up

Export Citation Format

Share Document