Grid-Based Object Tracking

2021 ◽  
Author(s):  
Sascha Steyer

Mobile robots require an accurate environment perception to plan intelligent maneuvers and avoid collisions. This thesis presents a novel multi sensor environment estimation strategy that fully combines tracking moving objects and mapping the static environment. The basic idea is to fuse and accumulate measurement data by a dynamic occupancy grid model, whereas moving objects are extracted subsequently based on that generic low-level grid representation. Overall, this work results in a robust and consistent estimation of arbitrary objects and obstacles, which is demonstrated in the context of autonomous driving in complex unstructured environments. Contents Notations VIII Abstract XI 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenges of Multi-Sensor Environment Perception . . . . . . . . . . . . . 2 1.3 Main Contribution and Outline of This Work . . . . . . . . . . . . . . . . 8 2 Measurement Grid Representation and Fusion 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.2...

Robotica ◽  
1996 ◽  
Vol 14 (5) ◽  
pp. 553-560
Author(s):  
Yuefeng Zhang ◽  
Robert E. Webber

SUMMARYA grid-based method for detecting moving objects is presented. This method involves the extension and combination of two methods: (1) the Hough Transform and (2) the Occupancy Grid method. The Occupancy Grid method forms the basis for a probabilistic estimation of the location and velocity of objects in the scene from the sensor data. The Hough Transform enables the new method to handle non-integer velocity values. A model for simulating a sonar ring is also presented. Experimental results show that this method can handle objects moving at non-integer velocities.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2894
Author(s):  
Minh-Quan Dao ◽  
Vincent Frémont

Multi-Object Tracking (MOT) is an integral part of any autonomous driving pipelines because it produces trajectories of other moving objects in the scene and predicts their future motion. Thanks to the recent advances in 3D object detection enabled by deep learning, track-by-detection has become the dominant paradigm in 3D MOT. In this paradigm, a MOT system is essentially made of an object detector and a data association algorithm which establishes track-to-detection correspondence. While 3D object detection has been actively researched, association algorithms for 3D MOT has settled at bipartite matching formulated as a Linear Assignment Problem (LAP) and solved by the Hungarian algorithm. In this paper, we adapt a two-stage data association method which was successfully applied to image-based tracking to the 3D setting, thus providing an alternative for data association for 3D MOT. Our method outperforms the baseline using one-stage bipartite matching for data association by achieving 0.587 Average Multi-Object Tracking Accuracy (AMOTA) in NuScenes validation set and 0.365 AMOTA (at level 2) in Waymo test set.


2021 ◽  
Vol 13 (10) ◽  
pp. 1981
Author(s):  
Ruike Ren ◽  
Hao Fu ◽  
Hanzhang Xue ◽  
Zhenping Sun ◽  
Kai Ding ◽  
...  

High-precision 3D maps play an important role in autonomous driving. The current mapping system performs well in most circumstances. However, it still encounters difficulties in the case of the Global Navigation Satellite System (GNSS) signal blockage, when surrounded by too many moving objects, or when mapping a featureless environment. In these challenging scenarios, either the global navigation approach or the local navigation approach will degenerate. With the aim of developing a degeneracy-aware robust mapping system, this paper analyzes the possible degeneration states for different navigation sources and proposes a new degeneration indicator for the point cloud registration algorithm. The proposed degeneracy indicator could then be seamlessly integrated into the factor graph-based mapping framework. Extensive experiments on real-world datasets demonstrate that the proposed 3D reconstruction system based on GNSS and Light Detection and Ranging (LiDAR) sensors can map challenging scenarios with high precision.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3410
Author(s):  
Claudia Malzer ◽  
Marcus Baum

High-resolution automotive radar sensors play an increasing role in detection, classification and tracking of moving objects in traffic scenes. Clustering is frequently used to group detection points in this context. However, this is a particularly challenging task due to variations in number and density of available data points across different scans. Modified versions of the density-based clustering method DBSCAN have mostly been used so far, while hierarchical approaches are rarely considered. In this article, we explore the applicability of HDBSCAN, a hierarchical DBSCAN variant, for clustering radar measurements. To improve results achieved by its unsupervised version, we propose the use of cluster-level constraints based on aggregated background information from cluster candidates. Further, we propose the application of a distance threshold to avoid selection of small clusters at low hierarchy levels. Based on exemplary traffic scenes from nuScenes, a publicly available autonomous driving data set, we test our constraint-based approach along with other methods, including label-based semi-supervised HDBSCAN. Our experiments demonstrate that cluster-level constraints help to adjust HDBSCAN to the given application context and can therefore achieve considerably better results than the unsupervised method. However, the approach requires carefully selected constraint criteria that can be difficult to choose in constantly changing environments.


2021 ◽  
Vol 69 (6) ◽  
pp. 511-523
Author(s):  
Henrietta Lengyel ◽  
Viktor Remeli ◽  
Zsolt Szalay

Abstract The emergence of new autonomous driving systems and functions – in particular, systems that base their decisions on the output of machine learning subsystems responsible for environment perception – brings a significant change in the risks to the safety and security of transportation. These kinds of Advanced Driver Assistance Systems are vulnerable to new types of malicious attacks, and their properties are often not well understood. This paper demonstrates the theoretical and practical possibility of deliberate physical adversarial attacks against deep learning perception systems in general, with a focus on safety-critical driver assistance applications such as traffic sign classification in particular. Our newly developed traffic sign stickers are different from other similar methods insofar that they require no special knowledge or precision in their creation and deployment, thus they present a realistic and severe threat to traffic safety and security. In this paper we preemptively point out the dangers and easily exploitable weaknesses that current and future systems are bound to face.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141668713 ◽  
Author(s):  
Seongjo Lee ◽  
Seoungjae Cho ◽  
Sungdae Sim ◽  
Kiho Kwak ◽  
Yong Woon Park ◽  
...  

Obstacle avoidance and available road identification technologies have been investigated for autonomous driving of an unmanned vehicle. In order to apply research results to autonomous driving in real environments, it is necessary to consider moving objects. This article proposes a preprocessing method to identify the dynamic zones where moving objects exist around an unmanned vehicle. This method accumulates three-dimensional points from a light detection and ranging sensor mounted on an unmanned vehicle in voxel space. Next, features are identified from the cumulative data at high speed, and zones with significant feature changes are estimated as zones where dynamic objects exist. The approach proposed in this article can identify dynamic zones even for a moving vehicle and processes data quickly using several features based on the geometry, height map and distribution of three-dimensional space data. The experiment for evaluating the performance of proposed approach was conducted using ground truth data on simulation and real environment data set.


Sign in / Sign up

Export Citation Format

Share Document