scholarly journals Enhanced Breast Cancer Recognition Based on Rotation Forest Feature Selection Algorithm

Author(s):  
Indrajit Mandal
2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Muhammad Hammad Memon ◽  
Jian Ping Li ◽  
Amin Ul Haq ◽  
Muhammad Hunain Memon ◽  
Wang Zhou

The accurate and efficient diagnosis of breast cancer is extremely necessary for recovery and treatment in early stages in IoT healthcare environment. Internet of Things has witnessed the transition in life for the last few years which provides a way to analyze both the real-time data and past data by the emerging role of artificial intelligence and data mining techniques. The current state-of-the-art method does not effectively diagnose the breast cancer in the early stages, and most of the ladies suffered from this dangerous disease. Thus, the early detection of breast cancer significantly poses a great challenge for medical experts and researchers. To solve the problem of early-stage detection of breast cancer, we proposed machine learning-based diagnostic system which effectively classifies the malignant and benign people in the environment of IoT. In the development of our proposed system, a machine learning classifier support vector machine is used to classify the malignant and benign people. To improve the classification performance of the classification system, we used a recursive feature selection algorithm to select more suitable features from the breast cancer dataset. The training/testing splits method is applied for training and testing of the classifier for the best predictive model. Additionally, the classifier performance has been checked on by using performance evaluation metrics such as classification, specificity, sensitivity, Matthews’s correlation coefficient, F1-score, and execution time. To test the proposed method, the dataset “Wisconsin Diagnostic Breast Cancer” has been used in this research study. The experimental results demonstrate that the recursive feature selection algorithm selects the best subset of features, and the classifier SVM achieved optimal classification performance on this best subset of features. The SVM kernel linear achieved high classification accuracy (99%), specificity (99%), and sensitivity (98%), and the Matthews’s correlation coefficient is 99%. From these experimental results, we concluded that the proposed system performance is excellent due to the selection of more appropriate features that are selected by the recursive feature selection algorithm. Furthermore, we suggest this proposed system for effective and efficient early stages diagnosis of breast cancer. Thus, through this system, the recovery and treatment will be more effective for breast cancer. Lastly, the implementation of the proposed system is very reliable in all aspects of IoT healthcare for breast cancer.


2020 ◽  
Vol 8 (2S7) ◽  
pp. 2237-2240

In diagnosis and prediction systems, algorithms working on datasets with a high number of dimensions tend to take more time than those with fewer dimensions. Feature subset selection algorithms enhance the efficiency of Machine Learning algorithms in prediction problems by selecting a subset of the total features and thus pruning redundancy and noise. In this article, such a feature subset selection method is proposed and implemented to diagnose breast cancer using Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms. This feature selection algorithm is based on Social Group Optimization (SGO) an evolutionary algorithm. Higher accuracy in diagnosing breast cancer is achieved using our proposed model when compared to other feature selection-based Machine Learning algorithms


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1238
Author(s):  
Supanat Chamchuen ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Puripong Suthisopapan ◽  
Pirat Khunkitti

Power quality disturbance (PQD) is an important issue in electrical distribution systems that needs to be detected promptly and identified to prevent the degradation of system reliability. This work proposes a PQD classification using a novel algorithm, comprised of the artificial bee colony (ABC) and the particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO” as the feature selection algorithm. The proposed adaptive technique is applied to a combination of ABC and PSO algorithms, and then used as the feature selection algorithm. A discrete wavelet transform is used as the feature extraction method, and a probabilistic neural network is used as the classifier. We found that the highest classification accuracy (99.31%) could be achieved through nine optimally selected features out of all 72 extracted features. Moreover, the proposed PQD classification system demonstrated high performance in a noisy environment, as well as the real distribution system. When comparing the presented PQD classification system’s performance to previous studies, PQD classification accuracy using adaptive ABC-PSO as the optimal feature selection algorithm is considered to be at a high-range scale; therefore, the adaptive ABC-PSO algorithm can be used to classify the PQD in a practical electrical distribution system.


Sign in / Sign up

Export Citation Format

Share Document