scholarly journals Forest Fire Prediction in Northern Sumatera using Support Vector Machine Based on the Fire Weather Index

2020 ◽  
Author(s):  
Darwis Robinson Manalu ◽  
Muhammad Zarlis ◽  
Herman Mawengkang ◽  
Opim Salim Sitompul

Forest fires are a major environmental issue, creating economical and ecological damage while dangering human lives. The investigation and survey for forest fire had been done in Aek Godang, Northern Sumatera, Indonesia. There is 26 hotspot in 2017 close to Aek Godang, North Sumatera, Indonesia. In this study, we use a data mining approach to train and test the data of forest fire and the Fire Weather Index (FWI) from meteorological data. The aim of this study to predict the burned area and identify the forest fire in Aek Godang areas, North Sumatera. The result of this study indicated that Fire fighting and prevention activity may be one reason for the observed lack of correlation. The fact that this dataset exists indicates that there is already some effort going into fire prevention.

2011 ◽  
Vol 20 (8) ◽  
pp. 963 ◽  
Author(s):  
Xiaorui Tian ◽  
Douglas J. McRae ◽  
Jizhong Jin ◽  
Lifu Shu ◽  
Fengjun Zhao ◽  
...  

The Canadian Forest Fire Weather Index (FWI) system was evaluated for the Daxing'anling region of northern China for the 1987–2006 fire seasons. The FWI system reflected the regional fire danger and could be effectively used there in wildfire management. The various FWI system components were classified into classes (i.e. low to extreme) for fire conditions found in the region. A total of 81.1% of the fires occurred in the high, very high and extreme fire danger classes, in which 73.9% of the fires occurred in the spring (0.1, 9.5, 33.3 and 33.1% in March, April, May and June). Large wildfires greater than 200 ha in area (16.7% of the total) burnt 99.2% of the total burnt area. Lightning was the main ignition source for 57.1% of the total fires. Result show that forest fires mainly occurred in deciduous coniferous forest (61.3%), grass (23.9%) and deciduous broad leaved forest (8.0%). A bimodal fire season was detected, with peaks in May and October. The components of FWI system were good indicators of fire danger in the Daxing'anling region of China and could be used to build a working fire danger rating system for the region.


2021 ◽  
Author(s):  
Marta Gruszczynska ◽  
Alan Mandal ◽  
Grzegorz Nykiel ◽  
Tomasz Strzyzewski ◽  
Weronika Wronska ◽  
...  

<p>Fires negatively affect the composition and structure of fauna and flora, as well as the quality of air, soils and water. They cause economic losses and pose a risk to human life. Poland is at the forefront of European countries in terms of forest fires. Therefore, Institute of Meteorology and Water Management - National Research Institute (IMWM-NIR) implemented fire danger forecast system based on high-resolution (2.5 km) Weather Research and Forecast (WRF) model. Forecasted meteorological data are used to calculate parameters of Canadian Forest Fire Weather Index (FWI) System: Fire Weather Index (FWI), Initial Spread Index (ISI), Buildup Index (BUI), Fine Fuel Moisture Code (FFMC), Duff Moisture Code (DMC), and Drought Code (DC). Each parameter is presented in one of the classes corresponding to the fire danger – from low to extreme. In this way, a daily 24- and 48-hour fire danger forecasts are generated for the whole area of Poland and presented on IMWM-NIR meteorological website (meteo.imgw.pl).</p><p>In this presentation we show analyses of reliability of implemented FWI system. For this purpose, data reprocessing from March to September 2019 were made. Also data on fires occurrence on forest lands: time of occurrence, characteristics and location, from the resources of the State Fire Service were collected. Finally, for the selected period, we obtained a dataset of about 8 thousand events for which we assigned values of FWI parameters. Generally, based on our analysis, correlation between number of fires and averaged value of FWI amounted over 0.8. We found out, the correlation coefficient calculated for regions differ. The correlation is higher in central and northern Poland compared to the eastern part of the country, which also correspond to the number of fires. This may be related to the different forest structure - there is a higher proportion of broadleaf forests in the east. The comparison of 24- and 48-hour forecasts showed that they have similar reliability.</p>


2020 ◽  
Author(s):  
Burcu Calda ◽  
Kamil Collu ◽  
Aytac Pacal ◽  
Mehmet Levent Kurnaz

<p>Forest fires are naturals in the Mediterranean ecosystems. However, in the last decade, the number of wildfires has significantly increased in the Mediterranean basin along with climate change. Therefore, forecasts of this region by using fire indices are crucial to take necessary precautions. In the present study, the projected changes for the period 2070 - 2099 concerning the control period 1971 - 2000 were used to estimate forest fire risk by the Canadian Fire Weather Index (FWI). RCP4.5 and RCP8.5 emission scenarios (IPCC) outputs of MPI-ESM-MR and HadGEM2-ES dynamically downscaled to 50 km for the CORDEX-MENA domain with the use of the RegCM4 were utilized. ERA-Interim observational data from ECMWF covering the period 1980-2012 were also used to test the performances of models. The output of MPI-ESM-MR gave more similar fire risk prediction with the reforecast of observational data (ERA-Interim). Thus, the MPI-ESM-MR model could be more suitable to estimate fire risk by FWI. According to future projection, forest fire risk will significantly increase throughout the region for the last 30 years of this century.</p>


Author(s):  
Hermanto Asima Nainggolan ◽  
Desak Putu Okta Veanti ◽  
Dzikrullah Akbar

Prevention and mitigation of forest and land fires have important roles considering its various negative impacts. Throughout 2018, in Ogan Komering Ilir District, 864 hectares of land burned. This data increased significantly compared to the burned area in the previous year. Lack of field meteorological observation is still a problem in solving the problem of forest fire in the region. Consequently, we utilize NASA - GFWED and FIRMS satellite data to analyze the hotspots probabilities in Ogan Komering Ilir District, South Sumatra. Conditional probability analysis will be used to find out the likelihood of hotspots based on FWI and FFMC from 2001 to 2016. More than 50 percent of hotspots appear during extreme FFMC class and high to extreme FWI class. The probability of hotspots for extreme FFMC class and extreme FWI class varied between 0.3 to 10.4 % and 0.1 to 3.8 % respectively. Meanwhile, fire-prone areas with the highest density of fires are in the sub-district of Tulung Selapan, and the safest region is the Cengal sub-district. 


2010 ◽  
Vol 19 (5) ◽  
pp. 541 ◽  
Author(s):  
Björn Reineking ◽  
Patrick Weibel ◽  
Marco Conedera ◽  
Harald Bugmann

Understanding the environmental and human determinants of forest fire ignitions is crucial for landscape management. In this study, we consider lightning- and human-induced fires separately and evaluate the relative importance of weather, forest composition and human activities on the occurrence of forest fire ignitions in the most fire-prone region of Switzerland, the Canton Ticino. Independent variables included 14 drought and fire weather indices, forest composition and human influences. Logistic regression models were used to relate these independent variables to records of forest fires over a 37-year period (1969–2005). We found large differences in the importance of environmental and human controls on forest fire ignitions between lightning- and human-induced events: lightning-induced fires occurred in a small range of weather conditions well captured by the Duff Moisture Code from the Canadian Forest Fire Weather Index System and the LandClim Drought Index, and with negligible influence of distance to human infrastructure, whereas human-induced fires occurred in a wider range of weather conditions well captured by the Angstroem and the Fosberg Fire Weather Index, mainly in deciduous forests, and strongly depending on proximity to human infrastructure. We conclude that the suitability of fire indices can vary dramatically between ignition sources, suggesting that some of these indices are useful within certain regions and fire types only. The ignition source is an important factor that needs to be taken into account by fire managers and when developing models of forest fire occurrence.


2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3307-3316 ◽  
Author(s):  
Tatjana Ratknic ◽  
Mihailo Ratknic ◽  
Nikola Rakonjac ◽  
Ivana Zivanovic ◽  
Zoran Poduska

The paper presents the results on the study of the possible application of the Canadian Forest Fire Weather Index and the Modified Angstrom Index in forest fire risk assessments. The daily values of these indices for the period 2005-2015 were related to the forest fire database. It was found that there is a relatively weak to moderate correlation between forest fires and the values of the Canadian Forest Fire Weather Index. In order to improve the wildfire risk assessments (including forest fires), the index was modified. The modified index has a significantly greater correlation with the actual events of forest fires and consequently a much wider application in southern Serbia. The modified index can be of great importance in the future concepts of forest fire risk management.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1087
Author(s):  
Daniela Alves ◽  
Miguel Almeida ◽  
Domingos Xavier Viegas ◽  
Ilda Novo ◽  
M. Yolanda Luna

Portugal and Spain have a cross-border cooperation protocol on wildfires response for a buffer strip of 25 km for each side of the border. In spite of the success of this collaboration, there are issues to be improved, since Portuguese and Spanish authorities use different methodologies to assess the daily fire danger. A methodology to harmonize fire danger and its interpretation by the Portuguese and Spanish Civil protection authorities in the transboundary buffer strip area is hereby presented. The fire danger index used is the Canadian Fire Weather Index (FWI), which requires input from meteorological data and gives an indication of fire intensity. The fire danger class is an important decision support tool for preventing and fighting wildfires. Since the meaning of FWI values change from region-to-region according to its specific characteristics, a calibration process was performed based on statistical data of the daily FWI values, the number of fires and burned area between 2005 and 2013. The results of the FWI calibration and harmonization of the data for the five danger classes minimizes the fire danger discrepancies across the border. This methodology has the potential to be reproduced in other areas.


2008 ◽  
Vol 2 (1) ◽  
pp. 77-80 ◽  
Author(s):  
D. Cane ◽  
N. Ciccarelli ◽  
F. Gottero ◽  
A. Francesetti ◽  
F. Pelfini ◽  
...  

Abstract. Piedmont region is located in North-Western Italy and is surrounded by the alpine chain and by the Appennines. The region is covered by a wide extension of forests, mainly in its mountain areas (the forests cover 36% of the regional territory). Forested areas are interested by wildfire events. In the period 1997–2005 Piedmont was interested by an average 387 forest fires per year, covering an average 1926 ha of forest per year. Meteorological conditions like long periods without precipitation contribute to create favourable conditions to forest fire development, while the fire propagation is made easier by the foehn winds, frequently interesting the region in winter and spring particularly. The meteorological danger index FWI (Fire Weather Index) was developed by Van Wagner (1987) for the Canadian Forestry Service, providing a complete description of the behaviour of the different forest components in response to the changing weather conditions. We applied the FWI to the Piedmont region on warning areas previously defined for fire management purposes. The meteorological data-set is based on the data of the very-dense non-GTS network of weather stations managed by Arpa Piemonte. The thresholds for the definition of a danger scenarios system were defined comparing historical FWI data with fires occurred on a 5 years period. The implementation of a prognostic FWI prediction system is planned for the early 2008, involving the use of good forecasts of weather parameters at the station locations obtained by the Multimodel SuperEnsemble post-processing technique.


2014 ◽  
Vol 14 (6) ◽  
pp. 1477-1490 ◽  
Author(s):  
A. Venäläinen ◽  
N. Korhonen ◽  
O. Hyvärinen ◽  
N. Koutsias ◽  
F. Xystrakis ◽  
...  

Abstract. Understanding how fire weather danger indices changed in the past and how such changes affected forest fire activity is important in a changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis data sets, ERA-40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960–2012. Additionally, we used national forest fire statistics from Greece, Spain and Finland to examine the relationship between fire danger and fires. There is no obvious trend in fire danger for the time period covered by ERA-40 (1960–1999), whereas for the period 1980–2012 covered by ERA Interim, the mean FWI shows an increasing trend for southern and eastern Europe which is significant at the 99% confidence level. The cross correlations calculated at the national level in Greece, Spain and Finland between total area burned and mean FWI of the current season is of the order of 0.6, demonstrating the extent to which the current fire-season weather can explain forest fires. To summarize, fire risk is multifaceted, and while climate is a major determinant, other factors can contribute to it, either positively or negatively.


Sign in / Sign up

Export Citation Format

Share Document