scholarly journals Temporal variations and change in forest fire danger in Europe for 1960–2012

2014 ◽  
Vol 14 (6) ◽  
pp. 1477-1490 ◽  
Author(s):  
A. Venäläinen ◽  
N. Korhonen ◽  
O. Hyvärinen ◽  
N. Koutsias ◽  
F. Xystrakis ◽  
...  

Abstract. Understanding how fire weather danger indices changed in the past and how such changes affected forest fire activity is important in a changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis data sets, ERA-40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960–2012. Additionally, we used national forest fire statistics from Greece, Spain and Finland to examine the relationship between fire danger and fires. There is no obvious trend in fire danger for the time period covered by ERA-40 (1960–1999), whereas for the period 1980–2012 covered by ERA Interim, the mean FWI shows an increasing trend for southern and eastern Europe which is significant at the 99% confidence level. The cross correlations calculated at the national level in Greece, Spain and Finland between total area burned and mean FWI of the current season is of the order of 0.6, demonstrating the extent to which the current fire-season weather can explain forest fires. To summarize, fire risk is multifaceted, and while climate is a major determinant, other factors can contribute to it, either positively or negatively.

2013 ◽  
Vol 1 (6) ◽  
pp. 6291-6326
Author(s):  
A. Venäläinen ◽  
N. Korhonen ◽  
N. Koutsias ◽  
F. Xystrakis ◽  
I. R. Urbieta ◽  
...  

Abstract. Understanding how fire-weather danger indices changed in the past, and detecting how changes affected forest fire activity is important in changing climate. We used the Canadian Fire Weather Index (FWI), calculated from two reanalysis datasets, ERA 40 and ERA Interim, to examine the temporal variation of forest fire danger in Europe in 1960–2012. Additionally, we used national forest-fires statistical data from Greece and Spain to relate fire danger and fire activity. There is no obvious trend in fire danger for the time period covered by ERA 40 (1960–1999) whereas for the period 1980–2012 covered by ERA Interim, the mean FWI and the number of high fire risk days shows an increasing trend which is significant at the 99% confidence level for South and East Europe. The cross-correlation calculated at national level in Greece and Spain between mean yearly area burned and mean FWI of the current season is of the order 0.5–0.6, and demonstrates the importance of the fire-season weather on forest fires. Our results show that, fire risk is multifaceted, and factors like changes in fire fighting capacity, ignition patterns, or landscapes might have played a role in forest fires trends. However, weather trends remain as important determinants of forest fires.


2011 ◽  
Vol 20 (8) ◽  
pp. 963 ◽  
Author(s):  
Xiaorui Tian ◽  
Douglas J. McRae ◽  
Jizhong Jin ◽  
Lifu Shu ◽  
Fengjun Zhao ◽  
...  

The Canadian Forest Fire Weather Index (FWI) system was evaluated for the Daxing'anling region of northern China for the 1987–2006 fire seasons. The FWI system reflected the regional fire danger and could be effectively used there in wildfire management. The various FWI system components were classified into classes (i.e. low to extreme) for fire conditions found in the region. A total of 81.1% of the fires occurred in the high, very high and extreme fire danger classes, in which 73.9% of the fires occurred in the spring (0.1, 9.5, 33.3 and 33.1% in March, April, May and June). Large wildfires greater than 200 ha in area (16.7% of the total) burnt 99.2% of the total burnt area. Lightning was the main ignition source for 57.1% of the total fires. Result show that forest fires mainly occurred in deciduous coniferous forest (61.3%), grass (23.9%) and deciduous broad leaved forest (8.0%). A bimodal fire season was detected, with peaks in May and October. The components of FWI system were good indicators of fire danger in the Daxing'anling region of China and could be used to build a working fire danger rating system for the region.


Author(s):  
František Jurečka ◽  
Martin Možný ◽  
Jan Balek ◽  
Zdeněk Žalud ◽  
Miroslav Trnka

The performance of fire indices based on weather variables was analyzed with a special focus on the Czech Republic. Three fire weather danger indices that are the basis of fire danger rating systems used in different parts of the world were assessed: the Canadian Fire Weather Index (FWI), Australian Forest Fire Danger Index (FFDI) and Finnish Forest Fire Index (FFI). The performance of the three fire danger indices was investigated at different scales and compared with actual fire events. First, the fire danger indices were analyzed for different land use types during the period 1956–2015. In addition, in the analysis, the three fire danger indices were compared with wildfire events during the period 2001–2015. The fire danger indices were also analyzed for the specific locality of the Bzenec area where a large forest fire event occurred in May 2012. The study also focused on the relationship between fire danger indices and forest fires during 2018 across the area of the Jihomoravský region. Comparison of the index values with real fires showed that the index values corresponded well with the occurrence of forest fires. The analysis of the year 2018 showed that the highest index values were reached on days with the greater fire occurrence. On days with 5 or 7 reported fires per day, the fire danger indices reached values between 3 and 4.


2012 ◽  
Vol 12 (8) ◽  
pp. 2591-2601 ◽  
Author(s):  
H. M. Mäkelä ◽  
M. Laapas ◽  
A. Venäläinen

Abstract. Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD) model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June–August), the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908–2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.


2014 ◽  
Vol 23 (2) ◽  
pp. 185 ◽  
Author(s):  
Xiao-rui Tian ◽  
Feng-jun Zhao ◽  
Li-fu Shu ◽  
Ming-yu Wang

This paper predicts future changes in fire danger and the fire season in the current century for south-western China under two different climate change scenarios. The fire weather index (FWI) system calculated from daily outputs of a regional climate model with a horizontal resolution of 50×50km was used to assess fire danger. Temperature and precipitation demonstrated a gradually increasing trend for the future. Forest fire statistics for 1987–2011 revealed that the FWI, initial spread index and seasonal severity rating were significantly related to the number of forest fires between 100 and 1000ha in size. Over three future periods, the FWI component indices will increase greatly. The mean FWI value will increase by 0.83–1.85, 1.83–2.91 and 3.33–3.97 in the periods 2011–2040, 2041–2070 and 2071–2100. The regions with predicted FWI increases are mainly in central and south-eastern China. The fire season (including days with high, very high and extreme fire danger ratings) will be prolonged by 9–13, 18–21 and 28–31 days over these periods. This fire season extension will mainly be due to days with an extreme fire danger rating. Considering predicted future changes in the forest fire danger rating and the fire season, it is suggested that climate change adaptation measures be implemented.


2019 ◽  
Vol 11 (16) ◽  
pp. 4284 ◽  
Author(s):  
Vassiliki Varela ◽  
Diamando Vlachogiannis ◽  
Athanasios Sfetsos ◽  
Stelios Karozis ◽  
Nadia Politi ◽  
...  

Fire occurrence and behaviour in Mediterranean-type ecosystems strongly depend on the air temperature and wind conditions, the amount of fuel load and the drought conditions that drastically increase flammability, particularly during the summer period. In order to study the fire danger due to climate change for these ecosystems, the meteorologically based Fire Weather Index (FWI) can be used. The Fire Weather Index (FWI) system, which is part of the Canadian Forest Fire Danger Rating System (CFFDRS), has been validated and recognized worldwide as one of the most trusted and important indicators for meteorological fire danger mapping. A number of FWI system components (Fire Weather Index, Drought Code, Initial Spread Index and Fire Severity Rating) were estimated and analysed in the current study for the Mediterranean area of France. Daily raster-based data-sets for the fire seasons (1st May–31st October) of a historic and a future time period were created for the study area based on representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios, outputs of CNRM-SMHI and MPI-SMHI climate models. GIS spatial analyses were applied on the series of the derived daily raster maps in order to provide a number of output maps for the study area. The results portray various levels of changes in fire danger, in the near future, according to the examined indices. Number of days with high and very high FWI values were found to be doubled compared to the historical period, in particular in areas of the Provence-Alpes-Côte d’Azur (PACA) region and Corsica. The areas with high Initial Spread Index and Seasonal Spread Index values increased as well, forming compact zones of high fire danger in the southern part of the study area, while the Drought Code index did not show remarkable changes. The current study on the evolution of spatial and temporal distribution of forest fire danger due to climate change can provide important knowledge to the decision support process for prevention and management policies of forest fires both at a national and EU level.


2010 ◽  
Vol 86 (2) ◽  
pp. 200-212 ◽  
Author(s):  
Martin E Alexander

In Canada, the importance of seasonality in forest fire danger rating associated with phenological changes in deciduous tree leaves and lesser ground vegetation has historically been taken into account by dividing the fire season into three distinct periods (i.e., spring, summer, and fall). During the mid-1980s, the developers of the Canadian Forest Fire Behavior Prediction (FBP) System did not envision that the M-2 Boreal Mixedwood – Green fuel type with 100% hardwood composition would eventually be explicitly interpreted by field users and other researchers to represent a trembling aspen (Populus tremuloides Michx.) fuel type in the summer following green-up or flushing of the overstory canopy and understory vegetation. Interest in what has become to be known as the D-2 FBP System fuel type to represent leafed-out trembling aspen stands during the summer fire season has steadily increased since. Formal recognition of such a fuel type may very well constitute an example of overextending the original basis and heuristics associated with the rate of fire spread model for the M-2 FBP System fuel type. Thus, the assumptions underlying a D-2 fuel type are explicitly restated here for the benefit of fire managers and researchers alike. Furthermore, an interim guideline is presented with respect to the threshold condition in fuel dryness necessary for surface fire spread in the D-2 fuel type to occur based on existing empirical observations garnered from experimental fires, prescribed burns and wildfires. This criterion was deduced from existing information and knowledge, and is expressed in terms of the Buildup Index (BUI) component of the Canadian Forest Fire Weather Index System. The rationale for the descriptive name assigned to the D-2 fuel type and the corresponding fuel strata characteristics are given. Improvements in the present basis of the D-2 fuel type could be realized from monitoring selected wildfires and operational prescribed fires and/or by carrying out an experimental burning study. Key words: Canadian Forest Fire Behavior Prediction System,Canadian Forest Fire Danger Rating System,Canadian Forest Fire Weather Index System,deciduous,fire behavior, fire danger, fire environment, fire hazard, fire potential, fire risk, forest flammability, fuel type, fuel moisture, green-up, hardwood, rate of fire spread.


2019 ◽  
Vol 3 (11) ◽  
pp. 25-40 ◽  
Author(s):  
Lourdes Villers-Ruiz ◽  
Emilio Chuvieco ◽  
Inmaculada Aguado

Entre los sistemas de alerta temprana de incendios forestales destaca el desarrollado por el Servicio Forestal de Canadá, denominado Fire Weather Index (FWI). Con el fin de contribuir a la creación de un sistema de alerta temprana, se utilizó este índice para determinar las condiciones de peligro a incendios en el Parque Nacional Malinche a partir de una serie de datos diarios de enero 2004 a octubre 2009 de cinco estaciones meteorológicas automáticas instaladas en el parque a una altitud de 3,000 m, se hicieron los cálculos de los elementos que contiene el índice; para ello, se empleó la versión automatizada del Canadian Forest Fire Danger Rating System. Se realizaron correlaciones y se crearon cuatro categorías con los valores de los componentes, según la frecuencia de incendios y el área siniestrada. También, se señalaron, los valores de temperatura máxima y mínima, humedad relativa y lluvia por categoría. Se constituyeron los umbrales mínimos de gran peligrosidad a incendios para cada uno de los elementos. En el caso del código de humedad de los combustibles finos, el umbral se estableció en 80 puntos; de superarse este valor, el número de incendios por día se incrementa sustancialmente. El código de sequía, el Índice de dispersión inicial del fuego; así como, el Índice acumulado fueron los más significativos en relación a la frecuencia de incendios, por lo que se calculó la probabilidad de estos eventos, para ciertos intervalos de los elementos considerados.


2020 ◽  
Author(s):  
Anasuya Barik ◽  
Somnath Baidya Roy

<p>Meteorology has a strong impact on forest fires. Meteorological parameters such as temperature, relative humidity, wind speed and precipitation alter the fuel loading in forests, control the changes in spatial distribution, intensity and frequency of forest fires and changes in forest fire season. Hence, it is important to understand the relationship between forest fires and meteorological factors and build models that can simulate these relationships.</p><p>The Canadian Forest Fire Danger Rating System (CFFDRS) has been used globally to assess and predict the fire behavior in various forest ecosystems. The Fire Weather Index (FWI) of CFFDRS models the relationship between meteorology and forest fires. In this study we calibrate the FWI over Indian forests using percentile analysis and logistic regression technique and test the performance using satellite-derived (MODIS daily fire data from 2003-2018) fire count and Fire Radiative Power (FRP). As the Indian forest landscape is highly heterogeneous, we calibrate the FWI over 4 FWI zones namely Himalayan, Deciduous, Western Ghats and Thorn forests based on IGBP forest classification and Koppen climatic zones.  Five fire danger classes having thresholds of 99<sup>th</sup>, 95<sup>th</sup>, 90<sup>th</sup>, 80<sup>th</sup> and 70<sup>th</sup>of FWI percentiles have been defined with decreasing severity. Results show that the calibrated FWI is capable of simulating the forest fire behavior over India. Sensitivity studies show that temperature and relative humidity are the key controlling factors of forest fires over India.</p><p>This study is one of the first attempts to use fire models to simulate fire behavior over India. It can serve as a launchpad for further work on fire hazard prediction and effects of climate change on fire hazard in India.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document