scholarly journals Deriving Autism Spectrum Disorder Functional Networks from RS-FMRI Data using Group ICA and Dictionary Learning

2021 ◽  
Author(s):  
Xin Yang ◽  
Ning Zhang ◽  
Donglin Wang

The objective of this study is to derive functional networks for the autism spectrum disorder (ASD) population using the group ICA and dictionary learning model together and to classify ASD and typically developing (TD) participants using the functional connectivity calculated from the derived functional networks. In our experiments, the ASD functional networks were derived from resting-state functional magnetic resonance imaging (rs-fMRI) data. We downloaded a total of 120 training samples, including 58 ASD and 62 TD participants, which were obtained from the public repository: Autism Brain Imaging Data Exchange I (ABIDE I). Our methodology and results have five main parts. First, we utilize a group ICA model to extract functional networks from the ASD group and rank the top 20 regions of interest (ROIs). Second, we utilize a dictionary learning model to extract functional networks from the ASD group and rank the top 20 ROIs. Third, we merged the 40 selected ROIs from the two models together as the ASD functional networks. Fourth, we generate three corresponding masks based on the 20 selected ROIs from group ICA, the 20 ROIs selected from dictionary learning, and the 40 combined ROIs selected from both. Finally, we extract ROIs for all training samples using the above three masks, and the calculated functional connectivity was used as features for ASD and TD classification. The classification results showed that the functional networks derived from ICA and dictionary learning together outperform those derived from a single ICA model or a single dictionary learning model.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinlong Hu ◽  
Lijie Cao ◽  
Tenghui Li ◽  
Bin Liao ◽  
Shoubin Dong ◽  
...  

Deep neural networks have recently been applied to the study of brain disorders such as autism spectrum disorder (ASD) with great success. However, the internal logics of these networks are difficult to interpret, especially with regard to how specific network architecture decisions are made. In this paper, we study an interpretable neural network model as a method to identify ASD participants from functional magnetic resonance imaging (fMRI) data and interpret results of the model in a precise and consistent manner. First, we propose an interpretable fully connected neural network (FCNN) to classify two groups, ASD versus healthy controls (HC), based on input data from resting-state functional connectivity (rsFC) between regions of interests (ROIs). The proposed FCNN model is a piecewise linear neural network (PLNN) which uses piecewise linear function LeakyReLU as its activation function. We experimentally compared the FCNN model against widely used classification models including support vector machine (SVM), random forest, and two new classes of deep neural network models in a large dataset containing 871 subjects from ABIDE I database. The results show the proposed FCNN model achieves the highest classification accuracy. Second, we further propose an interpreting method which could explain the trained model precisely with a precise linear formula for each input sample and decision features which contributed most to the classification of ASD versus HC participants in the model. We also discuss the implications of our proposed approach for fMRI data classification and interpretation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Fahad Almuqhim ◽  
Fahad Saeed

Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet.


2015 ◽  
Vol 72 (8) ◽  
pp. 767 ◽  
Author(s):  
Leonardo Cerliani ◽  
Maarten Mennes ◽  
Rajat M. Thomas ◽  
Adriana Di Martino ◽  
Marc Thioux ◽  
...  

2018 ◽  
Vol 8 (9) ◽  
pp. 558-566 ◽  
Author(s):  
Brian Cechmanek ◽  
Harriet Johnston ◽  
Sherene Vazhappilly ◽  
Catherine Lebel ◽  
Signe Bray

2020 ◽  
Author(s):  
Shuxia Yao ◽  
Menghan Zhou ◽  
Yuan Zhang ◽  
Feng Zhou ◽  
Qianqian Zhang ◽  
...  

AbstractWhile a number of functional and structural changes occur in large-scale brain networks in autism spectrum disorder (ASD), reduced interhemispheric resting state functional connectivity (rsFC) between homotopic regions may be of particular importance as a biomarker. ASD is an early-onset developmental disorder and neural alterations are often age-dependent, reflecting dysregulated developmental trajectories, although no studies have investigated whether homotopic interhemispheric rsFC alterations occur in ASD children. The present study conducted a voxel-based homotopic interhemispheric rsFC analysis in 146 SD and 175 typically developing children under age 10 and examined associations with symptom severity in the Autism Brain Imaging Data Exchange datasets. Given the role of corpus callosum (CC) in interhemispheric connectivity and reported CC volume changes in ASD we additionally examined whether there were parallel volumetric changes in ASD children. Results demonstrated decreased homotopic rsFC in ASD children in the medial prefrontal cortex, precuneus and posterior cingulate cortex of the default mode network (DMN), the dorsal anterior cingulate cortex of the salience network, the precentral gyrus and inferior parietal lobule of the mirror neuron system, the lingual, fusiform and inferior occipital gyri of the visual processing network and thalamus. Symptom severity was associated with homotopic rsFC in regions in the DMN and visual processing network. There were no significant CC volume changes in ASD children. The present study shows that reduced homotopic interhemispheric rsFC in brain networks in ASD adults/adolescents is already present in children of 5-10 years old and further supports their potential use as a general ASD biomarker.


Sign in / Sign up

Export Citation Format

Share Document