scholarly journals ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data

2021 ◽  
Vol 15 ◽  
Author(s):  
Fahad Almuqhim ◽  
Fahad Saeed

Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet.

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Renzhou Gui ◽  
Tongjie Chen ◽  
Han Nie

With the continuous development of science, more and more research results have proved that machine learning is capable of diagnosing and studying the major depressive disorder (MDD) in the brain. We propose a deep learning network with multibranch and local residual feedback, for four different types of functional magnetic resonance imaging (fMRI) data produced by depressed patients and control people under the condition of listening to positive- and negative-emotions music. We use the large convolution kernel of the same size as the correlation matrix to match the features and obtain the results of feature matching of 264 regions of interest (ROIs). Firstly, four-dimensional fMRI data are used to generate the two-dimensional correlation matrix of one person’s brain based on ROIs and then processed by the threshold value which is selected according to the characteristics of complex network and small-world network. After that, the deep learning model in this paper is compared with support vector machine (SVM), logistic regression (LR), k-nearest neighbor (kNN), a common deep neural network (DNN), and a deep convolutional neural network (CNN) for classification. Finally, we further calculate the matched ROIs from the intermediate results of our deep learning model which can help related fields further explore the pathogeny of depression patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jinlong Hu ◽  
Lijie Cao ◽  
Tenghui Li ◽  
Bin Liao ◽  
Shoubin Dong ◽  
...  

Deep neural networks have recently been applied to the study of brain disorders such as autism spectrum disorder (ASD) with great success. However, the internal logics of these networks are difficult to interpret, especially with regard to how specific network architecture decisions are made. In this paper, we study an interpretable neural network model as a method to identify ASD participants from functional magnetic resonance imaging (fMRI) data and interpret results of the model in a precise and consistent manner. First, we propose an interpretable fully connected neural network (FCNN) to classify two groups, ASD versus healthy controls (HC), based on input data from resting-state functional connectivity (rsFC) between regions of interests (ROIs). The proposed FCNN model is a piecewise linear neural network (PLNN) which uses piecewise linear function LeakyReLU as its activation function. We experimentally compared the FCNN model against widely used classification models including support vector machine (SVM), random forest, and two new classes of deep neural network models in a large dataset containing 871 subjects from ABIDE I database. The results show the proposed FCNN model achieves the highest classification accuracy. Second, we further propose an interpreting method which could explain the trained model precisely with a precise linear formula for each input sample and decision features which contributed most to the classification of ASD versus HC participants in the model. We also discuss the implications of our proposed approach for fMRI data classification and interpretation.


2021 ◽  
Author(s):  
Xin Yang ◽  
Ning Zhang ◽  
Donglin Wang

The objective of this study is to derive functional networks for the autism spectrum disorder (ASD) population using the group ICA and dictionary learning model together and to classify ASD and typically developing (TD) participants using the functional connectivity calculated from the derived functional networks. In our experiments, the ASD functional networks were derived from resting-state functional magnetic resonance imaging (rs-fMRI) data. We downloaded a total of 120 training samples, including 58 ASD and 62 TD participants, which were obtained from the public repository: Autism Brain Imaging Data Exchange I (ABIDE I). Our methodology and results have five main parts. First, we utilize a group ICA model to extract functional networks from the ASD group and rank the top 20 regions of interest (ROIs). Second, we utilize a dictionary learning model to extract functional networks from the ASD group and rank the top 20 ROIs. Third, we merged the 40 selected ROIs from the two models together as the ASD functional networks. Fourth, we generate three corresponding masks based on the 20 selected ROIs from group ICA, the 20 ROIs selected from dictionary learning, and the 40 combined ROIs selected from both. Finally, we extract ROIs for all training samples using the above three masks, and the calculated functional connectivity was used as features for ASD and TD classification. The classification results showed that the functional networks derived from ICA and dictionary learning together outperform those derived from a single ICA model or a single dictionary learning model.


Author(s):  
P. Nagaraj ◽  
P. Deepalakshmi

Diabetes, caused by the rise in level of glucose in blood, has many latest devices to identify from blood samples. Diabetes, when unnoticed, may bring many serious diseases like heart attack, kidney disease. In this way, there is a requirement for solid research and learning model’s enhancement in the field of gestational diabetes identification and analysis. SVM is one of the powerful classification models in machine learning, and similarly, Deep Neural Network is powerful under deep learning models. In this work, we applied Enhanced Support Vector Machine and Deep Learning model Deep Neural Network for diabetes prediction and screening. The proposed method uses Deep Neural Network obtaining its input from the output of Enhanced Support Vector Machine, thus having a combined efficacy. The dataset we considered includes 768 patients’ data with eight major features and a target column with result “Positive” or “Negative”. Experiment is done with Python and the outcome of our demonstration shows that the deep Learning model gives more efficiency for diabetes prediction.


2021 ◽  
Vol 11 (12) ◽  
pp. 3028-3037
Author(s):  
D. Pavithra ◽  
A. N. Jayanthi

Autism Spectrum Disorder is one of the major investigation area in current era. There are many research works introduced earlier for handling the Autism Spectrum Disorders. However those research works doesn’t achieve the expected accuracy level. The accuracy and prediction efficiency can be increased by building a better classification system using Deep Learning. This paper focuses on the deep learning technique for Autism Diagnosis and the domain identification. In the proposed work, an Enhanced Deep Recurrent Neural Network has been developed for the detection of ASD at all ages. It attempts to predict the autism spectrum in the children along with prediction of areas which can predict the autism in the prior level. The main advantage of EDRNN is to provide higher accuracy in classification and domain identification. Here Artificial Algal Algorithm is used for identifying the most relevant features from the existing feature set. This model was evaluated for the data that followed Indian Scale for Assessment of Autism. The results obtained for the proposed EDRNN has better accuracy, sensitivity, specificity, recall and precision.


Sign in / Sign up

Export Citation Format

Share Document