scholarly journals Combining Evidence from Auditory, Instantaneous Frequency and Random Forest for Anti-Noise Speech Recognition

2021 ◽  
Author(s):  
Kun Liao

Due to the shortcomings of acoustic feature parameters in speech signals, and the limitations of existing acoustic features in characterizing the integrity of the speech information, This paper proposes a method for speech recognition combining cochlear feature and random forest. Environmental noise can pose a threat to the stable operation of current speech recognition systems. It is therefore essential to develop robust systems that are able to identify speech under low signal-to-noise ratio. In this paper, we propose a method of speech recognition combining spectral subtraction, auditory and energy features extraction. This method first extract novel auditory features based on cochlear filter cepstral coefficients (CFCC) and instantaneous frequency (IF), i.e., CFCCIF. Spectral subtraction is then introduced into the front end of feature extraction, and the extracted feature is called enhanced auditory features (EAF). An energy feature Teager energy operator (TEO) is also extracted, the combination of them is known as a fusion feature. Linear discriminate analysis (LDA) is then applied to feature selection and optimization of the fusion feature. Finally, random forest (RF) is used as the classifier in a non-specific persons, isolated words, and small-vocabulary speech recognition system. On the Korean isolated words database, the proposed features (i.e., EAF) after fusion with Teager energy features have shown strong robustness in the nosiy situation. Our experiments show that the optimization feature achieved in a speech recognition task display a high recognition rate and excellent anti-noise performance.

2019 ◽  
Vol 29 (1) ◽  
pp. 1261-1274 ◽  
Author(s):  
Vishal Passricha ◽  
Rajesh Kumar Aggarwal

Abstract Deep neural networks (DNNs) have been playing a significant role in acoustic modeling. Convolutional neural networks (CNNs) are the advanced version of DNNs that achieve 4–12% relative gain in the word error rate (WER) over DNNs. Existence of spectral variations and local correlations in speech signal makes CNNs more capable of speech recognition. Recently, it has been demonstrated that bidirectional long short-term memory (BLSTM) produces higher recognition rate in acoustic modeling because they are adequate to reinforce higher-level representations of acoustic data. Spatial and temporal properties of the speech signal are essential for high recognition rate, so the concept of combining two different networks came into mind. In this paper, a hybrid architecture of CNN-BLSTM is proposed to appropriately use these properties and to improve the continuous speech recognition task. Further, we explore different methods like weight sharing, the appropriate number of hidden units, and ideal pooling strategy for CNN to achieve a high recognition rate. Specifically, the focus is also on how many BLSTM layers are effective. This paper also attempts to overcome another shortcoming of CNN, i.e. speaker-adapted features, which are not possible to be directly modeled in CNN. Next, various non-linearities with or without dropout are analyzed for speech tasks. Experiments indicate that proposed hybrid architecture with speaker-adapted features and maxout non-linearity with dropout idea shows 5.8% and 10% relative decrease in WER over the CNN and DNN systems, respectively.


2020 ◽  
Vol 5 (2) ◽  
pp. 609
Author(s):  
Segun Aina ◽  
Kofoworola V. Sholesi ◽  
Aderonke R. Lawal ◽  
Samuel D. Okegbile ◽  
Adeniran I. Oluwaranti

This paper presents the application of Gaussian blur filters and Support Vector Machine (SVM) techniques for greeting recognition among the Yoruba tribe of Nigeria. Existing efforts have considered different recognition gestures. However, tribal greeting postures or gestures recognition for the Nigerian geographical space has not been studied before. Some cultural gestures are not correctly identified by people of the same tribe, not to mention other people from different tribes, thereby posing a challenge of misinterpretation of meaning. Also, some cultural gestures are unknown to most people outside a tribe, which could also hinder human interaction; hence there is a need to automate the recognition of Nigerian tribal greeting gestures. This work hence develops a Gaussian Blur – SVM based system capable of recognizing the Yoruba tribe greeting postures for men and women. Videos of individuals performing various greeting gestures were collected and processed into image frames. The images were resized and a Gaussian blur filter was used to remove noise from them. This research used a moment-based feature extraction algorithm to extract shape features that were passed as input to SVM. SVM is exploited and trained to perform the greeting gesture recognition task to recognize two Nigerian tribe greeting postures. To confirm the robustness of the system, 20%, 25% and 30% of the dataset acquired from the preprocessed images were used to test the system. A recognition rate of 94% could be achieved when SVM is used, as shown by the result which invariably proves that the proposed method is efficient.


2019 ◽  
Vol 13 (2) ◽  
pp. 136-141 ◽  
Author(s):  
Abhisek Sethy ◽  
Prashanta Kumar Patra ◽  
Deepak Ranjan Nayak

Background: In the past decades, handwritten character recognition has received considerable attention from researchers across the globe because of its wide range of applications in daily life. From the literature, it has been observed that there is limited study on various handwritten Indian scripts and Odia is one of them. We revised some of the patents relating to handwritten character recognition. Methods: This paper deals with the development of an automatic recognition system for offline handwritten Odia character recognition. In this case, prior to feature extraction from images, preprocessing has been done on the character images. For feature extraction, first the gray level co-occurrence matrix (GLCM) is computed from all the sub-bands of two-dimensional discrete wavelet transform (2D DWT) and thereafter, feature descriptors such as energy, entropy, correlation, homogeneity, and contrast are calculated from GLCMs which are termed as the primary feature vector. In order to further reduce the feature space and generate more relevant features, principal component analysis (PCA) has been employed. Because of the several salient features of random forest (RF) and K- nearest neighbor (K-NN), they have become a significant choice in pattern classification tasks and therefore, both RF and K-NN are separately applied in this study for segregation of character images. Results: All the experiments were performed on a system having specification as windows 8, 64-bit operating system, and Intel (R) i7 – 4770 CPU @ 3.40 GHz. Simulations were conducted through Matlab2014a on a standard database named as NIT Rourkela Odia Database. Conclusion: The proposed system has been validated on a standard database. The simulation results based on 10-fold cross-validation scenario demonstrate that the proposed system earns better accuracy than the existing methods while requiring least number of features. The recognition rate using RF and K-NN classifier is found to be 94.6% and 96.4% respectively.


2020 ◽  
pp. 002029402096482
Author(s):  
Sulaiman Khan ◽  
Abdul Hafeez ◽  
Hazrat Ali ◽  
Shah Nazir ◽  
Anwar Hussain

This paper presents an efficient OCR system for the recognition of offline Pashto isolated characters. The lack of an appropriate dataset makes it challenging to match against a reference and perform recognition. This research work addresses this problem by developing a medium-size database that comprises 4488 samples of handwritten Pashto character; that can be further used for experimental purposes. In the proposed OCR system the recognition task is performed using convolution neural network. The performance analysis of the proposed OCR system is validated by comparing its results with artificial neural network and support vector machine based on zoning feature extraction technique. The results of the proposed experiments shows an accuracy of 56% for the support vector machine, 78% for artificial neural network, and 80.7% for the proposed OCR system. The high recognition rate shows that the OCR system based on convolution neural network performs best among the used techniques.


2014 ◽  
Vol 571-572 ◽  
pp. 665-671 ◽  
Author(s):  
Sen Xu ◽  
Xu Zhao ◽  
Cheng Hua Duan ◽  
Xiao Lin Cao ◽  
Hui Yan Li ◽  
...  

As One of Features from other Languages, the Chinese Tone Changes of Chinese are Mainly Decided by its Vowels, so the Vowel Variation of Chinese Tone Becomes Important in Speech Recognition Research. the Normal Tone Recognition Ways are Always Based on Fundamental Frequency of Signal, which can Not Keep Integrity of Tone Signal. we Bring Forward to a Mathematical Morphological Processing of Spectrograms for the Tone of Chinese Vowels. Firstly, we will have Pretreatment to Recording Good Tone Signal by Using Cooledit Pro Software, and Converted into Spectrograms; Secondly, we will do Smooth and the Normalized Pretreatment to Spectrograms by Mathematical Morphological Processing; Finally, we get Whole Direction Angle Statistics of Tone Signal by Skeletonization way. the Neural Networks Stimulation Shows that the Speech Emotion Recognition Rate can Reach 92.50%.


2021 ◽  
Vol 11 (11) ◽  
pp. 4756
Author(s):  
Gaoran Guo ◽  
Xuhao Cui ◽  
Bowen Du

High-speed railways (HSRs) are established all over the world owing to their advantages of high speed, ride comfort, and low vibration and noise. A ballastless track slab is a crucial part of the HSR, and its working condition directly affects the safe operation of the train. With increasing train operation time, track slabs suffer from various defects such as track slab warping and arching as well as interlayer disengagement defect. These defects will eventually lead to the deformation of track slabs and thus jeopardize safe train operation. Therefore, it is important to monitor the condition of ballastless track slabs and identify their defects. This paper proposes a method for monitoring track slab deformation using fiber optic sensing technology and an intelligent method for identifying track slab deformation using the random-forest model. The results show that track-side monitoring can effectively capture the vibration signals caused by train vibration, track slab deformation, noise, and environmental vibration. The proposed intelligent algorithm can identify track slab deformation effectively, and the recognition rate can reach 96.09%. This paper provides new methods for track slab deformation monitoring and intelligent identification.


Sign in / Sign up

Export Citation Format

Share Document