scholarly journals FPGA Based Adaptive Neuro Fuzzy Inference Controller for Full Vehicle Nonlinear Active Suspension Systems

Author(s):  
Ammar A. Aldair ◽  
Weiji Wang
2010 ◽  
Vol 6 (2) ◽  
pp. 97-106
Author(s):  
A. Aldair ◽  
W. J. Wang

The main objective of designed the controller for a vehicle suspension system is to reduce the discomfort sensed by passengers which arises from road roughness and to increase the ride handling associated with the pitching and rolling movements. This necessitates a very fast and accurate controller to meet as much control objectives, as possible. Therefore, this paper deals with an artificial intelligence Neuro-Fuzzy (NF) technique to design a robust controller to meet the control objectives. The advantage of this controller is that it can handle the nonlinearities faster than other conventional controllers. The approach of the proposed controller is to minimize the vibrations on each corner of vehicle by supplying control forces to suspension system when travelling on rough road. The other purpose for using the NF controller for vehicle model is to reduce the body inclinations that are made during intensive manoeuvres including braking and cornering. A full vehicle nonlinear active suspension system is introduced and tested. The robustness of the proposed controller is being assessed by comparing with an optimal Fractional Order PIλDμ (FOPID) controller. The results show that the intelligent NF controller has improved the dynamic response measured by decreasing the cost function.


Author(s):  
M. A. Ajaj ◽  
A. M. Sharaf ◽  
S. A. Hegazy ◽  
Y. H. Hossamel-deen

This paper presents a comprehensive investigation of automotive semi-active suspension control algorithms and compares their characteristics in terms of ride comfort and tire-road holding ability. Particular attention has been paid to the semi-active suspension systems fitted with a shock absorber of dual damping characteristics. Different mathematical models are presented to investigate the ride response considering both simplified and complex vehicle models. Numerical simulation has been carried out through the MATLAB/SIMULINK environment which aids the future development of controllable suspension systems to improve vehicle ride comfort. The results show a considerable improvement of the vehicle ride response using different schemes of semi-active suspension system in particular the modified groundhook control algorithm.


2020 ◽  
Vol 53 (2) ◽  
pp. 14407-14412
Author(s):  
G. BEL HAJ FREJ ◽  
X. MOREAU ◽  
E. HAMROUNI ◽  
A. BENINE-NETO ◽  
V. HERNETTE

Sign in / Sign up

Export Citation Format

Share Document