scholarly journals WiFi Transmit Power and its Effect on Co-Channel Interference

2021 ◽  
Vol 13 (1) ◽  
pp. 1-17
Author(s):  
Zyanya Cordoba ◽  
Riddhi Rana ◽  
Giovanna Rendon ◽  
Justin Thunell ◽  
Abdelrahman Elleithy

The mass adoption of WiFi (IEEE 802.11) technology has increased numbers of devices simultaneously attempting to use high-bandwidth applications such as video streaming in a finite portion of the frequency spectrum. These increasing numbers can be seen in the deployment of highly-dense wireless environments in which performance can be affected due to the intensification of challenges such as co-channel interference (CCI). There are mechanisms in place to try to avoid sources of interference from non-WiFi devices. Still, CCI caused by legitimate WiFi traffic can be equally or even more disruptive, and also though some tools and protocols try to address CCI, these are no longer sufficient for this type of environment. Therefore, this paper investigates the effect of transmit power and direction have on CCI in a high-density environment consisting of multiple access points (APs) and multiple clients. We suggest improvements on publicly- existing documented power control algorithms and techniques by proposing a cooperative approach consisting of the incorporation of feedback from the receiver to the transmitter to allow it to reduce power level where possible, which will minimize the range of CCI for near clients without compromising coverage for the most distant ones.

Technologies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 22
Author(s):  
Ramiro Sámano-Robles

This paper investigates backlog retransmission strategies for a class of random access protocols with retransmission diversity (i.e., network diversity multiple access or NDMA) combined with multiple-antenna-based multi-packet reception (MPR). This paper proposes NDMA-MPR as a candidate for 5G contention-based and ultra-low latency multiple access. This proposal is based on the following known features of NDMA-MPR: (1) near collision-free performance, (2) very low latency values, and (3) reduced feedback complexity (binary feedback). These features match the machine-type traffic, real-time, and dense object connectivity requirements in 5G. This work is an extension of previous works using a multiple antenna receiver with correlated Rice channels and co-channel interference modelled as a Rayleigh fading variable. Two backlog retransmission strategies are implemented: persistent and randomized. Boundaries and extended analysis of the system are here obtained for different network and channel conditions. Average delay is evaluated using the M/G/1 queue model with statistically independent vacations. The results suggest that NDMA-MPR can achieve very low values of latency that can guarantee real- or near-real-time performance for multiple access in 5G, even in scenarios with high correlation and moderate co-channel interference.


2014 ◽  
Vol 16 (3) ◽  
pp. 344-354 ◽  
Author(s):  
Sunghee Lee ◽  
Hyunsuk Roh ◽  
Hyunwoo Lee ◽  
Kwangsue Chung

Sign in / Sign up

Export Citation Format

Share Document