scholarly journals Fuzzy Rough Information Measures and their Applications

Author(s):  
Seema Singh ◽  
D.S. Hooda ◽  
S.C. Malik

The degree of roughness characterizes the uncertainty contained in a rough set. The rough entropy was defined to measure the roughness of a rough set. Though, it was effective and useful, but not accurate enough. Some authors use information measure in place of entropy for better understanding which measures the amount of uncertainty contained in fuzzy rough set .In this paper three new fuzzy rough information measures are proposed and their validity is verified. The application of these proposed information measures in decision making problems is studied and also compared with other existing information measures.

2019 ◽  
Vol 476 ◽  
pp. 290-318 ◽  
Author(s):  
Jianming Zhan ◽  
Bingzhen Sun ◽  
José Carlos R. Alcantud

Kybernetes ◽  
2016 ◽  
Vol 45 (3) ◽  
pp. 461-473 ◽  
Author(s):  
Sun Bingzhen ◽  
Ma Weimin

Purpose – The purpose of this paper is to present a new method for evaluation of emergency plans for unconventional emergency events by using the soft fuzzy rough set theory and methodology. Design/methodology/approach – In response to the problems of insufficient risk identification, incomplete and inaccurate data and different preference of decision makers, a new model for emergency plan evaluation is established by combining soft set theory with classical fuzzy rough set theory. Moreover, by combining the TOPSIS method with soft fuzzy rough set theory, the score value of the soft fuzzy lower and upper approximation is defined for the optimal object and the worst object. Finally, emergency plans are comprehensively evaluated according to the soft close degree of the soft fuzzy rough set theory. Findings – This paper presents a new perspective on emergency management decision making in unconventional emergency events. Also, the paper provides an effective model for evaluating emergency plans for unconventional events. Originality/value – The paper contributes to decision making in emergency management of unconventional emergency events. The model is useful for dealing with decision making with uncertain information.


2020 ◽  
Vol 142 ◽  
pp. 106331 ◽  
Author(s):  
Bingzhen Sun ◽  
Chang Qi ◽  
Weimin Ma ◽  
Ting Wang ◽  
Liye Zhang ◽  
...  

2015 ◽  
Vol 21 (7) ◽  
pp. 1803-1816 ◽  
Author(s):  
Haidong Zhang ◽  
Lan Shu ◽  
Shilong Liao

2020 ◽  
Vol 0 (0) ◽  
pp. 1-34
Author(s):  
Kuang-Hua Hu ◽  
Fu-Hsiang Chen ◽  
Ming-Fu Hsu ◽  
Gwo-Hshiung Tzeng

In today’s big-data era, enterprises are able to generate complex and non-structured information that could cause considerable challenges for CPA firms in data analysis and to issue improper audited reports within the required period. Artificial intelligence (AI)-enabled auditing technology not only facilitates accurate and comprehensive auditing for CPA firms, but is also a major breakthrough in auditing’s new environment. Applications of an AI-enabled auditing technique in external auditing can add to auditing efficiency, increase financial reporting accountability, ensure audit quality, and assist decision-makers in making reliable decisions. Strategies related to the adoption of an AI-enabled auditing technique by CPA firms cover the classical multiple criteria decision-making (MCDM) task (i.e., several perspectives/criteria must be considered). To address this critical task, the present study proposes a fusion multiple rule-based decision making (MRDM) model that integrates rule-based technique (i.e., the fuzzy rough set theory (FRST) with ant colony optimization (ACO)) into MCDM techniques that can assist decision makers in selecting the best methods necessary to achieve the aspired goals of audit success. We also consider potential implications for articulating suitable strategies that can improve the adoption of AI-enabled auditing techniques and that target continuous improvement and sustainable development.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Zaibin Chang ◽  
Lingling Mao

Multigranulation rough set theory is an important tool to deal with the problem of multicriteria information system. The notion of fuzzy β -neighborhood has been used to construct some covering-based multigranulation fuzzy rough set (CMFRS) models through multigranulation fuzzy measure. But the β -neighborhood has not been used in these models, which can be seen as the bridge of fuzzy covering-based rough sets and covering-based rough sets. In this paper, the new concept of multigranulation fuzzy neighborhood measure and some types of covering-based multigranulation fuzzy rough set (CMFRS) models based on it are proposed. They can be seen as the further combination of fuzzy sets: covering-based rough sets and multigranulation rough sets. Moreover, they are used to solve the problem of multicriteria decision making. Firstly, the definition of multigranulation fuzzy neighborhood measure is given based on the concept of β -neighborhood. Moreover, four types of CMFRS models are constructed, as well as their characteristics and relationships. Then, novel matrix representations of them are investigated, which can satisfy the need of knowledge discovery from large-scale covering information systems. The matrix representations can be more easily implemented than set representations by computers. Finally, we apply them to manage the problem of multicriteria group decision making (MCGDM) and compare them with other methods.


Sign in / Sign up

Export Citation Format

Share Document