scholarly journals Analysis of Machine Learning Algorithms with Feature Selection for Intrusion Detection using UNSW-NB15 Dataset

2021 ◽  
Vol 13 (1) ◽  
pp. 21-31
Author(s):  
Geeta Kocher ◽  
Gulshan Kumar

In recent times, various machine learning classifiers are used to improve network intrusion detection. The researchers have proposed many solutions for intrusion detection in the literature. The machine learning classifiers are trained on older datasets for intrusion detection, which limits their detection accuracy. So, there is a need to train the machine learning classifiers on the latest dataset. In this paper, UNSW-NB15, the latest dataset is used to train machine learning classifiers. The selected classifiers such as K-Nearest Neighbors (KNN), Stochastic Gradient Descent (SGD), Random Forest (RF), Logistic Regression (LR), and Naïve Bayes (NB) classifiers are used for training from the taxonomy of classifiers based on lazy and eager learners. In this paper, Chi-Square, a filter-based feature selection technique, is applied to the UNSW-NB15 dataset to reduce the irrelevant and redundant features. The performance of classifiers is measured in terms of Accuracy, Mean Squared Error (MSE), Precision, Recall, F1-Score, True Positive Rate (TPR) and False Positive Rate (FPR) with or without feature selection technique and comparative analysis of these machine learning classifiers is carried out.

2020 ◽  
Author(s):  
Geeta Kocher ◽  
Gulshan Kumar

With the advancement of internet technology, the numbers of threats are also rising exponentially. To reduce the impact of these threats, researchers have proposed many solutions for intrusion detection. In the literature, various machine learning classifiers are trained on older datasets for intrusion detection which limits their detection accuracy. So, there is a need to train the machine learning classifiers on latest dataset. In this paper, UNSW-NB15, the latest dataset is used to train machine learning classifiers. On the basis of theoretical analysis, taxonomy is proposed in terms of lazy and eager learners. From this proposed taxonomy, KNearest Neighbors (KNN), Stochastic Gradient Descent (SGD), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR) and Naïve Bayes (NB) classifiers are selected for training. The performance of these classifiers is tested in terms of Accuracy, Mean Squared Error (MSE), Precision, Recall, F1-Score, True Positive Rate (TPR) and False Positive Rate (FPR) on UNSW-NB15 dataset and comparative analysis of these machine learning classifiers is carried out. The experimental results show that RF classifier outperforms other classifiers.


Cybersecurity ◽  
2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Raisa Abedin Disha ◽  
Sajjad Waheed

AbstractTo protect the network, resources, and sensitive data, the intrusion detection system (IDS) has become a fundamental component of organizations that prevents cybercriminal activities. Several approaches have been introduced and implemented to thwart malicious activities so far. Due to the effectiveness of machine learning (ML) methods, the proposed approach applied several ML models for the intrusion detection system. In order to evaluate the performance of models, UNSW-NB 15 and Network TON_IoT datasets were used for offline analysis. Both datasets are comparatively newer than the NSL-KDD dataset to represent modern-day attacks. However, the performance analysis was carried out by training and testing the Decision Tree (DT), Gradient Boosting Tree (GBT), Multilayer Perceptron (MLP), AdaBoost, Long-Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) for the binary classification task. As the performance of IDS deteriorates with a high dimensional feature vector, an optimum set of features was selected through a Gini Impurity-based Weighted Random Forest (GIWRF) model as the embedded feature selection technique. This technique employed Gini impurity as the splitting criterion of trees and adjusted the weights for two different classes of the imbalanced data to make the learning algorithm understand the class distribution. Based upon the importance score, 20 features were selected from UNSW-NB 15 and 10 features from the Network TON_IoT dataset. The experimental result revealed that DT performed well with the feature selection technique than other trained models of this experiment. Moreover, the proposed GIWRF-DT outperformed other existing methods surveyed in the literature in terms of the F1 score.


Sign in / Sign up

Export Citation Format

Share Document