scholarly journals Review of the Deployment of and Research into Generation III & IV Nuclear Fission Reactors for Power Generation

2015 ◽  
Vol 1 ◽  
pp. 90-108
Author(s):  
Timothy Lambert ◽  
Xuan Hieu Nghiem

Nuclear fission is one of the more popular and efficient sources of energy that has been used in the last few decades. In the setting of the ongoing worldwide debate of the energy problem, this paper will review the different types and generations of nuclear reactors, and do comparisons with other notable energy sources (biofuel and fusion). The current generations III, III+, IV of reactor (mostly pressurized water reactors), their thermal efficiency, technical (structure and configuration), lifetime, energy output and how the systems contrast are discussed. The paper was written by gathering information from UTS library online database, as well as online articles related to fission power, all sources dating from 2000s onwards. Nuclear fission power is a very dense energy source as it provides higher amount of free energy than other energy sources from the same amount of fuel. The drawback, which is the high amount of radioactive waste that accumulates over time, along with thermal efficiency are improved upon by the current and next generations of reactors.

2009 ◽  
Vol 1193 ◽  
Author(s):  
Willie C.M.H. Meyer ◽  
I.J. van der Walt ◽  
Vusi Kabila ◽  
Jacoba J. Badenhorst ◽  
Danie Moolman ◽  
...  

AbstractSouth Africa initiated a program to significantly expand its total nuclear energy capacity by acquiring additional Pressurized Water Reactors (PWRs) and is currently researching Pebble Bed Modular Reactors (PBMRs) as next generation nuclear energy sources. The result of such an expansion in the current nuclear program will be a need for the disposal of additional nuclear waste. However, as an alternative strategy for spent PBMR fuel, the separation of the spent fuel into TRISO particles for disposal and graphite for re-use in the nuclear industry could also be considered.


Author(s):  
Paul Ponomaryov ◽  
Yifeng Zhou ◽  
Cristina-Maria Mazza ◽  
Igor Pioro

Currently, Pressurized Water Reactors (PWRs), Boiling Water Reactors (BWRs) and Pressurized Heavy Water Reactors (PHWRs) have the lowest thermal efficiencies compared to those of other nuclear-power reactors and thermal power plants. Therefore, the objective of this paper is to propose modifications to a generic PHWR to yield an increase in overall plant thermal efficiency. The focus of this paper is primarily on the secondary side of a Nuclear Power Plant (NPP) and is directly dealing with wet-steam High-Pressure (HP) and Low-Pressure (LP) turbine stages and a Moisture Separator and Reheater (MSR). Modifications of the HP and LP turbine stages are based on utilizing moisture removal stages (having up to 60% removal efficiency), which reduce the moisture content as the steam passes through those turbine stages. Reduced energy losses and an increase in mechanical efficiency due to lesser moisture content results in an increase in thermal efficiency. Furthermore, implementing moisture-removal stages in the LP turbine gives the ability to eliminate the reheater in the MSR, thus resulting in an increase of thermal efficiency due to both, the higher mechanical efficiency of an LP turbine and the redirection of live-steam previously used by the MSR to a HP turbine. To be able to show an increase in thermal efficiency based on these modifications of a generic PHWR, the Pickering CANDU-6 nuclear-reactor parameters were used as a reference case in the software, called DE-TOP. The modifications suggested in this paper can be applied to any NPP that uses a Rankine steam-turbine cycle on the secondary side (PWR, PHWR and/or BWR) and recommended for implementation during planned replacement of LP- and/or HP-turbine rotors for new construction of PWRs and PHWRs.


Alloy Digest ◽  
1992 ◽  
Vol 41 (9) ◽  

Abstract INCONEL FILLER METAL 52 is a high chromium filler metal for gas-metal-arc and gas-tungsten-arc welding of Inconel Alloy 690 (See Alloy Digest Ni-266, March 1981). Higher chromium is beneficial in resisting stress-corrosion cracking in high purity water for pressurized water reactors and for resistance to oxidizing acids. This datasheet provides information on composition and tensile properties. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-412. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1965 ◽  
Vol 14 (3) ◽  

Abstract JESSOP-SAVILLE ZIRCONIUM Alloy has a high melting point and possesses excellent corrosion resistance coupled with low neutron absorption properties. It is equivalent to ZIRCALOY 2. It is recommended for pressurized water reactors. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Zr-2. Producer or source: Jessop-Saville Ltd, Brightside Works.


Sign in / Sign up

Export Citation Format

Share Document