scholarly journals Synthesis of fast swelling superporous hydrogel: effect of concentration of crosslinker and acdisol on swelling ratio and mechanical strength.

2010 ◽  
Vol 2 (2) ◽  
pp. 135-140 ◽  
Author(s):  
Ashok Kumar ◽  
Manisha Pandey ◽  
M K Koshy ◽  
Shubhini A Saraf
2011 ◽  
Vol 403-408 ◽  
pp. 2985-2988
Author(s):  
Ping Zhang ◽  
Ling Bin Lu ◽  
Hai Feng Yang ◽  
Yang Cao

The degradable and well-distributed calcium alginates were obtained successfully by ionically cross-linking reaction which was the oxidized Sodium Alginate reflected with calcium ions. Their biological performances were investigated by testing swelling ratio, compression strength and degradation. The effects of oxidation degree and cross-linking density on the properties of calcium alginate were assessed. The results show the swelling ratios of samples were almost no effect whether modified or unmodified, furthermore modified calcium alginate had better degradation performance than unmodified.Lastly, oxidation may reduced the compression strength of samples,but increasing of ionically cross-linking density can enhance the mechanical strength.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroki Sugiyama ◽  
Kaneto Tsunemitsu ◽  
Hiroaki Onoe ◽  
Kotaro Obata ◽  
Koji Sugioka ◽  
...  

AbstractThe mechanical strength of hydrogel microstructures is crucial for obtaining the desired flexibility, robustness, and biocompatibility for various applications such as cell scaffolds and soft microrobots. In this study, we demonstrate the fabrication of microstructures composed of cellulose nanofibers (CNFs) and poly(ethylene glycol) diacrylate (PEGDA) hydrogels by multiphoton polymerization. The stress of the fabricated microstructure during tensile testing increased with an increase in the CNF concentration, indicating that the mechanical strength of the microstructure was enhanced by using CNFs as fillers. Moreover, the swelling ratio of the microstructure increased with increasing CNF concentration in the PEGDA hydrogel. Our results show the potential of the technique for the microfabrication of advanced cell scaffolds and soft microrobots with the desired mechanical strength.


Author(s):  
Avilash Carpenter ◽  
M.K. Gupta ◽  
Neetesh Kumar Jain ◽  
Urvashi Sharma ◽  
Rahul Sisodiya

Aim: The main of the study is to formulate and develop orally disintegrating fast dissolving tablet of Metoclopramide hydrochloride. Material & Methods: Before formulation and development of selected drug, the standard curve in buffer was prepared and absorbance at selected maxima was taken. Then two different disintegrating agents were selected and drug was mixed with disintegrating agents in different ratio. Various Preformulation parameters and evaluation of tablet i.e. disintegration time, dissolution time, friability, hardness, thickness were measured by standard procedure. Result & Discussion: The angle of repose for all the batches prepared. The values were found to be in the range of 30.46 to 36.45, which indicates good flow property for the powder blend according to the USP. The bulk density and tapped density for all the batches varied from 0.49 to 0.54 g/mL and 0.66 to 0.73, respectively. Carr’s index values were found to be in the range of 23.33 to 25.88, which is satisfactory for the powders as well as implies that the blends have good compressibility. Hausner ratio values obtained were in the range of 1.22 to 1.36, which shows a passable flow property for the powder blend based on the USP. The results for tablet thickness and height for all batches was found to range from 4.45 to 4.72 mm and 3.67 to 3.69 mm, respectively. Hardness or breaking force of tablets for all batches was found to range from 32.8 to 36.2 N. Tablet formulations must show good mechanical strength with sufficient hardness in order to handle shipping and transportation. Friability values for all the formulations were found to be in the range of 0.22 % to 0.30 %. Conclusion: Orally disintegrating tablets were compressed in order to have sufficient mechanical strength and integrity to withstand handling, shipping and transportation. The formulation was shown to have a rapid disintegration time that complied with the USP (less than one minute). The data obtained from the stability studies indicated that the orally disintegrating mini-tablets of MTH were stable under different environmental storage conditions. Keywords: Formulation & Development, Fast Dissolving Tablet, Metoclopramide, Anti-Emetic Drug, Oral Disintegrating Tablet


2003 ◽  
Vol 766 ◽  
Author(s):  
Raymond N. Vrtis ◽  
Mark L. O'Neill ◽  
Jean L. Vincent ◽  
Aaron S. Lukas ◽  
Brian K. Peterson ◽  
...  

AbstractWe report on our work to develop a process for depositing nanoporous organosilicate (OSG) films via plasma enhanced chemical vapor deposition (PECVD). This approach entails codepositing an OSG material with a plasma polymerizable hydrocarbon, followed by thermal annealing of the material to remove the porogen, leaving an OSG matrix with nano-sized voids. The dielectric constant of the final film is controlled by varying the ratio of porogen precursor to OSG precursor in the delivery gas. Because of the need to maintain the mechanical strength of the final material, diethoxymethylsilane (DEMS) is utilized as the OSG precursor. Utilizing this route we are able to deposit films with a dielectric constant of 2.55 to 2.20 and hardness of 0.7 to 0.3 GPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document