scholarly journals Task Assignment for Multi-UAV under Severe Uncertainty by Using Stochastic Multicriteria Acceptability Analysis

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoxuan Hu ◽  
Jing Cheng ◽  
He Luo

This paper considers a task assignment problem for multiple unmanned aerial vehicles (UAVs). The UAVs are set to perform attack tasks on a collection of ground targets in a severe uncertain environment. The UAVs have different attack capabilities and are located at different positions. Each UAV should be assigned an attack task before the mission starts. Due to uncertain information, many criteria values essential to task assignment were random or fuzzy, and the weights of criteria were not precisely known. In this study, a novel task assignment approach based on stochastic Multicriteria acceptability analysis (SMAA) method was proposed to address this problem. The uncertainties in the criteria were analyzed, and a task assignment procedure was designed. The results of simulation experiments show that the proposed approach is useful for finding a satisfactory assignment under severe uncertain circumstances.

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 443 ◽  
Author(s):  
Zhe Zhao ◽  
Jian Yang ◽  
Yifeng Niu ◽  
Yu Zhang ◽  
Lincheng Shen

In this paper, the cooperative multi-task online mission planning for multiple Unmanned Aerial Vehicles (UAVs) is studied. Firstly, the dynamics of unmanned aerial vehicles and the mission planning problem are studied. Secondly, a hierarchical mechanism is proposed to deal with the complex multi-UAV multi-task mission planning problem. In the first stage, the flight paths of UAVs are generated by the Dubins curve and B-spline mixed method, which are defined as “CBC)” curves, where “C” stands for circular arc and “B” stands for B-spline segment. In the second stage, the task assignment problem is solved as multi-base multi-traveling salesman problem, in which the “CBC” flight paths are used to estimate the trajectory costs. In the third stage, the flight trajectories of UAVs are generated by using Gaussian pseudospectral method (GPM). Thirdly, to improve the computational efficiency, the continuous and differential initial trajectories are generated based on the “CBC” flight paths. Finally, numerical simulations are presented to demonstrate the proposed approach, the designed initial solution search algorithm is compared with existing methods. These results indicate that the proposed hierarchical mission planning method can produce satisfactory mission planning results efficiently.


Author(s):  
Guangtong Xu ◽  
Teng Long ◽  
Zhu Wang ◽  
Li Liu

This paper presents a modified genetic algorithm using target-bundle-based encoding and tailored genetic operators to effectively tackle cooperative multiple task assignment problems of heterogeneous unmanned aerial vehicles. In the cooperative multiple task assignment problem, multiple tasks including reconnaissance, attack, and verification have to be sequentially performed on each target (e.g. ground control stations, tanks, etc.) by one or multiple unmanned aerial vehicles. Due to the precedence constraints of different tasks, a singular task-execution order may cause deadlock situations, i.e. one or multiple unmanned aerial vehicles being trapped in infinite waiting loops. To address this problem, a target-bundled genetic algorithm is proposed. As a key element of target-bundled genetic algorithm, target-bundle-based encoding is derived to fix multiple tasks on each target as a target-bundle. And individuals are generated by fixing the task-execution order on each target-bundle subject to task precedence constraints. During the evolution process, bundle-exchange crossover and multi-type mutation operators are customized to generate deadlock-free offspring. Besides, the time coordination method is developed to ensure that task-execution time satisfies task precedence constraints. The comparison results on numerical simulations demonstrate that target-bundled genetic algorithm outperforms particle swarm optimization and random search methods in terms of optimality and efficiency.


2014 ◽  
Vol 494-495 ◽  
pp. 1098-1101 ◽  
Author(s):  
Xia Chen ◽  
De Hui Wang

For UAV air combat task assignment problem, this paper presents an analysis method. Firstly, we analyzes the unmanned combat situation, establish the UAV air combat situation advantage function and interval information combat task allocation model. And then put forward multi-UAV air combat decision method of the discrete particle swarm optimization algorithm based on interval number sequence. Finally, we carry on the simulation, the simulation results show that the algorithm can effectively and reasonably solve the problem of multi-UAV air combat decision.


2020 ◽  
Vol 13 (1) ◽  
pp. 27
Author(s):  
Amjaad Alhaqbani ◽  
Heba Kurdi ◽  
Kamal Youcef-Toumi

The challenge concerning the optimal allocation of tasks across multiple unmanned aerial vehicles (multi-UAVs) has significantly spurred research interest due to its contribution to the success of various fleet missions. This challenge becomes more complex in time-constrained missions, particularly if they are conducted in hostile environments, such as search and rescue (SAR) missions. In this study, a novel fish-inspired algorithm for multi-UAV missions (FIAM) for task allocation is proposed, which was inspired by the adaptive schooling and foraging behaviors of fish. FIAM shows that UAVs in an SAR mission can be similarly programmed to aggregate in groups to swiftly survey disaster areas and rescue-discovered survivors. FIAM’s performance was compared with three long-standing multi-UAV task allocation (MUTA) paradigms, namely, opportunistic task allocation scheme (OTA), auction-based scheme, and ant-colony optimization (ACO). Furthermore, the proposed algorithm was also compared with the recently proposed locust-inspired algorithm for MUTA problem (LIAM). The experimental results demonstrated FIAM’s abilities to maintain a steady running time and a decreasing mean rescue time with a substantially increasing percentage of rescued survivors. For instance, FIAM successfully rescued 100% of the survivors with merely 16 UAVs, for scenarios of no more than eight survivors, whereas LIAM, Auction, ACO and OTA rescued a maximum of 75%, 50%, 35% and 35%, respectively, for the same scenarios. This superiority of FIAM performance was maintained under a different fleet size and number of survivors, demonstrating the approach’s flexibility and scalability.


Sign in / Sign up

Export Citation Format

Share Document