INVESTIGATION OF COMPLEX INDEX OF REFRACTION OF GALLIUM NITRIDE GaN

2018 ◽  
Vol 14 (2) ◽  
pp. 29-39
Author(s):  
J O AKINLAMI ◽  
I O OLATEJU

An understanding of the complex index of refraction of Gallium Nitride (GaN) is important because of the increasing application of GaN in many high frequency, optical and electronics devices. Complex index of refraction of Gallium Nitride (GaN)have been investigated theoretically by means of Kramers and Kronig method in the photon energy range 2.0 – 10.0eV. We obtained refractive index which has a maximum value of 2.89 at photon energy 7.0eV, the extinction coefficient which has a maximum value of 1.17 at photon energy 7.0eV, the dielectric constant, the real part of the complex dielectric constant has a maximum value of 7.0 at photon energy 7.0eV and the imaginary part of the complex dielectric constant has a maximum value of 6.79 at photon energy 7.0eV, the transmittance which has a maximum value of 0.18 at photon energy 7.0eV, the absorption coefficient which has a maximum value of 86.18 at photon energy 7.0eV. The values obtained for complex index of refraction ofGaN are essentially important for emerging GaN applications such ashigh-power and high-frequency devices, solar cell arrays for satellites, communications and optoelectronics devices.

1964 ◽  
Vol 42 (11) ◽  
pp. 2121-2128 ◽  
Author(s):  
P. L. E. Uslenghi

The scattered field produced by a plane electromagnetic wave incident on an infinitely long imperfectly conducting cylinder coated with a layer of material with complex index of refraction is considered. The geometric optics and the creeping wave contributions to the backscattered field are obtained, for normal incidence and small wavelengths.


1987 ◽  
Vol 2 (5) ◽  
pp. 645-647 ◽  
Author(s):  
Shuhan Lin ◽  
Shuguang Chen

Optical properties of plasma-deposited amorphous hydrogenated carbon films were studied by spectroscopic ellipsometry. From the ellipsometry data, the real and imaginary parts, n and k, of the complex index of refraction of the film have been deduced for photon energies between 2.0 and 4.0 eV for as-grown as well as for thermally annealed films. Here n and k showed considerable variation with subsequent annealing, even under 400°C. A tentative explanation of the results is proposed.


Author(s):  
С.А. Корчагин ◽  
Д.В. Терин

A method is proposed for modeling the complex dielectric constant of an anisotropic hierarchically constructed nanocomposite with a periodic structure, based on the complex application of quantum mechanical calculations, an effective medium model, and equivalent equivalent circuits. The dielectric constant of the TiO2 - Al2O3 nanocomposite under the action of external high-frequency electromagnetic radiation has been investigated. The wavelength ranges at which resonance bursts are observed are determined. The possibility of controlling the maxima of difference losses and resonance absorption maxima by changing the geometric parameters of the nanocomposite is shown.


Sign in / Sign up

Export Citation Format

Share Document