CONTRIBUTION OF AI TO THE CONSTRUCTION WORLD

2021 ◽  
Vol 12 (1) ◽  
pp. 58-70
Author(s):  
Kanhaiya Kumar ◽  
◽  
Muskan Kumari

Artificial intelligence is a department of computer science and information technological know-how, involved in the research, layout, and application of intelligent computer. Conventional techniques for modeling and optimizing complicated structure systems require big amounts of computing assets, and artificial-intelligence-primarily based solutions can frequently provide treasured alternatives for successfully solving problems inside the civil engineering. This paper summarizes currently evolved methods and theories within the growing path for programs of synthetic intelligence in civil engineering, such as evolutionary computation, neural networks, fuzzy systems, professional machine, reasoning, type, and learning, in addition to others like chaos theory, cuckoo seek, firefly algorithm, know-how-based engineering, and simulated annealing. The primary studies tendencies are also talked about in the end. The paper presents an overview of the advances of synthetic intelligence carried out in civil engineering.

2012 ◽  
Vol 2012 ◽  
pp. 1-22 ◽  
Author(s):  
Pengzhen Lu ◽  
Shengyong Chen ◽  
Yujun Zheng

Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.


2021 ◽  
Author(s):  
Rabia Saleem ◽  
Bo Yuan ◽  
Fatih Kurugollu ◽  
Ashiq Anjum

Artificial Intelligence (AI) models can learn from data and make decisions without any human intervention. However, the deployment of such models is challenging and risky because we do not know how the internal decision- making is happening in these models. Especially, the high-risk decisions such as medical diagnosis or automated navigation demand explainability and verification of the decision making process in AI algorithms. This research paper aims to explain Artificial Intelligence (AI) models by discretizing the black-box process model of deep neural networks using partial differential equations. The PDEs based deterministic models would minimize the time and computational cost of the decision-making process and reduce the chances of uncertainty that make the prediction more trustworthy.


Author(s):  
Juan R. Rabunal ◽  
Juan Puertas

This chapter proposes an application of two techniques of artificial intelligence in a civil engineering area: the artificial neural networks (ANN) and the evolutionary computation (EC). In this chapter, it is shown how these two techniques can work together in order to solve a problem in hydrology. This problem consists on modeling the effect of rain on the runoff flow in a typical urban basin. The ultimate goal is to design a real-time alarm system for floods or subsidence warning in various types of urban basins. A case study is included as an example.


Author(s):  
Sushruta Mishra ◽  
Soumya Sahoo ◽  
Brojo Kishore Mishra

The modern techniques of artificial intelligence have found application in almost all the fields of human knowledge. Among them, two important techniques of artificial intelligence, fuzzy systems (FS) and artificial neural networks (ANNs), have found many applications in various fields such as production, control systems, diagnostic, supervision, etc. They evolved and improved throughout the years to adapt arising needs and technological advancements. However, a great emphasis is given in the engineering field. The techniques of artificial intelligence based on fuzzy logic and neural networks are frequently applied together for solving engineering problems where the classic techniques do not supply an easy and accurate solution. Separately, each one of these techniques possesses advantages and disadvantages that, when mixed together, provide better results than the ones achieved with the use of each isolated technique. As ANNs and fuzzy systems have often been applied together, the concept of a fusion between them started to take shape. Neuro-fuzzy systems were born which utilize the advantages of both techniques. Such systems show two distinct ways of behavior. In a first phase, called learning phase, it behaves like neural networks that learn internal parameters off-line. Later, in the execution phase, it behaves like a fuzzy logic system. A neuro-fuzzy system is a fuzzy system that uses a learning algorithm derived from or inspired by neural network theory to determine its parameters (fuzzy sets and fuzzy rules) by processing data samples. Neural networks and fuzzy systems can be combined to join its advantages and to cure its individual illness. Neural networks introduce its computational characteristics of learning in the fuzzy systems and receive from them the interpretation and clarity of systems representation. Thus, the disadvantages of the fuzzy systems are compensated by the capacities of the neural networks. These techniques are complementary, which justifies its use together. This chapter deals with an analysis of neuro-fuzzy systems. Benefits of these systems are studied with its limitations too. Comparative analyses of various categories of neuro-fuzzy systems are discussed in detail. Apart from these, real-time applications of such systems are also presented.


2021 ◽  
Author(s):  
Rabia Saleem ◽  
Bo Yuan ◽  
Fatih Kurugollu ◽  
Ashiq Anjum

Artificial Intelligence (AI) models can learn from data and make decisions without any human intervention. However, the deployment of such models is challenging and risky because we do not know how the internal decision- making is happening in these models. Especially, the high-risk decisions such as medical diagnosis or automated navigation demand explainability and verification of the decision making process in AI algorithms. This research paper aims to explain Artificial Intelligence (AI) models by discretizing the black-box process model of deep neural networks using partial differential equations. The PDEs based deterministic models would minimize the time and computational cost of the decision-making process and reduce the chances of uncertainty that make the prediction more trustworthy.


Author(s):  
Juan R. Rabunal ◽  
Jerónimo Puertas

This chapter proposes an application of two techniques of artificial intelligence in a civil engineering area: the artificial neural networks (ANN) and the evolutionary computation (EC). In this chapter, it is shown how these two techniques can work together in order to solve a problem in hydrology. This problem consists on modeling the effect of rain on the runoff flow in a typical urban basin. The ultimate goal is to design a real-time alarm system for floods or subsidence warning in various types of urban basins. A case study is included as an example.


Author(s):  
Yousif Abdullatif Albastaki

This chapter is an introductory chapter that attempts to highlight the concept of computational intelligence and its application in the field of computing security; it starts with a brief description of the underlying principles of artificial intelligence and discusses the role of computational intelligence in overcoming conventional artificial intelligence limitations. The chapter then briefly introduces various tools or components of computational intelligence such as neural networks, evolutionary computing, swarm intelligence, artificial immune systems, and fuzzy systems. The application of each component in the field of computing security is highlighted.


Author(s):  
Inhau´ma N. Ferraz ◽  
Ana C. B. Garcia ◽  
Fla´via C. Bernardini

The physical and operational properties of pipelines vary greatly. There is thus no universally applicable method, external or internal, which possesses all the features and the functionality required for a perfect leak detection performance. The authors of this paper know quite well that traditional methods, in a low uncertainty environment, overcome artificial intelligence methods of leak detection systems. If one considers the real world as a creator of uncertainties, neural networks and fuzzy systems emerge as important promising technologies for the development of leak detection systems. In this work, we propose a method for constructing ensembles of ANNs for pipeline leak detection. The results obtained in our experiments were satisfactory.


2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


Sign in / Sign up

Export Citation Format

Share Document