Assessing The Linear And Planer Micro-Structural Defects In SnO2 Nanoparticles Through High Resolution Transmission Electron Microscopy (HRTEM)

2017 ◽  
Vol 8 (9) ◽  
pp. 927-931
Author(s):  
Shrabani Mondal
Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5107
Author(s):  
Zhen Yang ◽  
Zhiping Zou ◽  
Zeyang Zhang ◽  
Yubo Xing ◽  
Tao Wang

Si single crystal was implanted with 230 keV He+ ions to a fluence of 5 × 1016/cm2 at 600 °C. The structural defects in Si implanted with He at 600 °C and then annealed at 1000 °C were investigated by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The microstructure of an as-implanted sample is provided for comparison. After annealing, rod-like defects were diminished, while tangled dislocations and large dislocation loops appeared. Dislocation lines trapped by cavities were directly observed. The cavities remained stable except for a transition of shape, from octahedron to tetrakaidecahedron. Stacking-fault tetrahedrons were found simultaneously. Cavity growth was independent of dislocations. The evolution of observed lattice defects is discussed.


2002 ◽  
Vol 17 (1) ◽  
pp. 204-213 ◽  
Author(s):  
G. Y. Yang ◽  
J. M. Finder ◽  
J. Wang ◽  
Z. L. Wang ◽  
Z. Yu ◽  
...  

Microstructure in the SrTiO3/Si system has been studied using high-resolution transmission electron microscopy and image simulations. SrTiO3 grows heteroepitaxially on Si with the orientation relationship given by (001)STO//(001)Si and [100]STO//[110]Si. The lattice misfit between the SrTiO3 thin films and the Si substrate is accommodated by the presence of interfacial dislocations at the Si substrate side. The interface most likely consists of Si bonded to O in SrTiO3. The alternative presentation of Sr and Si atoms along the interface leads to the formation of 2× and 3× Sr configurations. Structural defects in the SrTiO3 thin film mainly consist of tilted domains and dislocations.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


1998 ◽  
Vol 536 ◽  
Author(s):  
V. P. Popov ◽  
A. K. Gutakovsky ◽  
I. V. Antonova ◽  
K. S. Zhuravlev ◽  
E. V. Spesivtsev ◽  
...  

AbstractA study of Si:H layers formed by high dose hydrogen implantation (up to 3x107cm-2) using pulsed beams with mean currents up 40 mA/cm2 was carried out in the present work. The Rutherford backscattering spectrometry (RBS), channeling of He ions, and transmission electron microscopy (TEM) were used to study the implanted silicon, and to identify the structural defects (a-Si islands and nanocrystallites). Implantation regimes used in this work lead to creation of the layers, which contain hydrogen concentrations higher than 15 at.% as well as the high defect concentrations. As a result, the nano- and microcavities that are created in the silicon fill with hydrogen. Annealing of this silicon removes the radiation defects and leads to a nanocrystalline structure of implanted layer. A strong energy dependence of dechanneling, connected with formation of quasi nanocrystallites, which have mutual small angle disorientation (<1.50), was found after moderate annealing in the range 200-500°C. The nanocrystalline regions are in the range of 2-4 nm were estimated on the basis of the suggested dechanneling model and transmission electron microscopy (TEM) measurements. Correlation between spectroscopic ellipsometry, visible photoluminescence, and sizes of nanocrystallites in hydrogenated nc-Si:H is observed.


Carbon ◽  
2017 ◽  
Vol 117 ◽  
pp. 174-181 ◽  
Author(s):  
Chang’an Wang ◽  
Thomas Huddle ◽  
Chung-Hsuan Huang ◽  
Wenbo Zhu ◽  
Randy L. Vander Wal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document