scholarly journals Designing problems of oil fields infrustructre in the Arctic under the climate change

2021 ◽  
Vol 6 (3) ◽  
pp. 130-135
Author(s):  
Elena A. Poskonina ◽  
Anna N. Kurchatova

Background. Designing problems of oil fields infrastructure in the Arctic under climate change, namely, applying of temperature coefficient when calculating bearing capacity, heaving of lightly loaded foundations, optimization of thermal stabilization solutions are presented in the article. Aim. To change the strategy for designing foundations on permafrost by choosing the worst soil conditions to the implementation of an invariant matrix for designing and construction of soil bases and foundations considering specifics of industrial facilities of oil and gas fields based on unified numerical calculations (regulations). Materials and methods. An overview of the current regulatory requirements to the design of foundations on permafrost is made. The analysis of forecast modeling of the temperature of soil bases of typical industrial facilities of oil and gas fields to justify design solutions and also the use of thermal stabilization systems is done. Results. It is proposed to develop a regional directory of weather stations with long observation period based on updated climate data to decrease the volume of designing work and the amount of mistakes in applying of thermal stabilization systems. It is necessary to create regional dynamic models of permafrost geosystems, implement forecast modeling of seasonal thawing potential depth and frozen ground temperature in natural landscapes on the base of geotechnical monitoring data and select adaptation methods to existing or expecting climate change trends. Conclusions. Regulations on designing and construction of soil bases and foundations on permafrost considering specifics of industrial facilities of oil and gas fields is an effective solution. It allows moving on the strategy implementation of uniform approaches to oil fields development on permafrost: from designing for every structure on the base of typical solutions and results of engineering surveys to invariant matrix of project solutions.

Polar Record ◽  
2020 ◽  
Vol 56 ◽  
Author(s):  
Sohvi Kangasluoma

Abstract Despite the global alarm caused by accelerating climate change, hydrocarbon companies are exploring and opening up new oil and gas fields all over the world, including the Arctic. With increasing attention on the Arctic, companies address the growing global environmental pressure in their public marketing in various ways. This article examines the webpages of Norwegian Equinor and Russian Gazprom & Gazprom Neft. Building on feminist discussions, I analyse the different justification strategies these fossil fuel companies working in the Arctic utilise in order to support their ongoing operations. This article concludes that in order to justify their operations in the Arctic, the Norwegian and Russian companies emphasise values based on discourses that have historically and culturally been associated with masculine practices, such as the control of nature enabled by technology. These justifications are thus reinforcing the narrative of the Arctic as a territory to be conquered and mastered. Even though the companies operate in different sociopolitical contexts, the grounds of justification are rather similar. Their biggest differences occur in their visual presentations of gender, which I argue is part of the justification. Approaching the fossil fuel industry from a feminist perspective allows questioning the dominant conceptualisations, which the justifications of Arctic hydrocarbon companies are based on.


2021 ◽  
Vol 25 (11) ◽  
pp. 4-11
Author(s):  
K.L. Chertes ◽  
O.V. Tupitsyna ◽  
V.N. Pystin ◽  
G.G. Gilaev ◽  
N.I. Shestakov ◽  
...  

The features of maintaining large-capacity waste from oil and gas fields that are suitable for recycling into secondary products are considered. A step-by-step system for selecting and justifying a waste is proposed taking into account the development of the deposit, its natural and manmade features, as well as the selected stages of operation. Pieces of technological schemes of waste preparation are given, as well as the design of the waste preparation complex for disposal constructed at one of the largest oil fields of the Samara region.


2021 ◽  
pp. 57-68
Author(s):  
N. Yu. Moskalenkо

The relevance of the article is associated with the importance of the object of the research. Dozens of unique and giant oil and gas fields, such as Urengoyskoye, Medvezhye, Yamburgskoye, Vyngapurovskoye, Messoyakhskoye, Nakhodkinskoye, Russkoye, have been identified within the Cenomanian complex. The main feature of Cenomanian rocks is their slow rock cementation. This leads to significant difficulties in core sampling and the following studies of it; that is the direct and most informative source of data on the composition and properties of rocks that create a geological section.The identification of the factors, which determine the slow rock cementation of reservoir rocks, allows establishing a certain order in sampling and laboratory core studies. Consequently, reliable data on the reservoir and estimation of hydrocarbon reserves both of discovered and exploited fields and newly discovered fields that are being developed on the territory of the Gydan peninsula and the Bolshekhetskaya depression will be obtained. This study is also important for the exploration and development of hydrocarbon resources of the continental shelf in the waters of the Arctic seas of Russia as one of the most promising areas.As a result of the analysis, it was found that the formation of rocks of the PK1-3 Cenomanian age of the Bolshekhetskaya depression happened under conditions of normal compaction of terrigenous sedimentary rocks that are located in the West Siberian basin. Slow rock cementation of reservoir rocks is associated with relatively low thermobaric conditions of their occurrence, as well as the low content of clay and absence of carbonate cements. Their lithological and petrophysical characteristics are close to the analogous Cenomanian deposits of the northern fields of Western Siberia and can be applied to other unconsolidated rocks studied areas.


2016 ◽  
pp. 71-74
Author(s):  
E. F. Zakharova ◽  
E. V. Levanova ◽  
G. N. Farkhutdinov

The efficiency of different physical and chemical technologies used in various areas and Romashkinskoye New-Elkhovskoye oil fields was researched. The result was a conclusion that at high water-cut objects, restriction of movement of water in highly permeable leached zones of a productive layer is one of the main conditions for increasing the efficiency of not only flooding, but also the use of physical and chemical methods based on improving of oil extraction factor.


Author(s):  
O.T. Gudmestad ◽  
J.E. Vindstad ◽  
H. Greiff Johnsen ◽  
A.B. Zolotukhin

1999 ◽  
Vol 39 (1) ◽  
pp. 12 ◽  
Author(s):  
M.T. Bradshaw C.B. Foster ◽  
M.E. Fellows ◽  
D.C. Rowland

Three cycles of successful commercial hydrocarbon exploration and discovery have occurred in Australia since 1960, although sporadic efforts to locate oil accumulations have occurred since 1860. The first cycle of successful exploration, from 1960 to 1972, revealed most of the productive basins and all of the giant oil fields found to date. After an interval of very low drilling rates between 1973 and 1978, exploration activity returned to strong levels for a second cycle of discovery between 1978 and 1988. A third cycle commenced in 1989 when there was an increase in exploration activity and the number of hydrocarbon discoveries again, after a low point in the mid 1980s.The discovery of oil and gas fields is dependent on the rate of exploration activity, geological endowment, exploration efficiency and chance. Technology and geological knowledge influence exploration efficiency. The main driver of exploration activity is the profit motive, which is modified by government policies, oil price, markets, and perceived prospectivity. Discovery itself is a powerful stimulus to further exploration. Through the last 40 years these factors have varied in their impact on exploration and the resulting petroleum discoveries.


2005 ◽  
Vol 45 (1) ◽  
pp. 349 ◽  
Author(s):  
G.M. Carlsen ◽  
K. Ameed R. Ghori

There are more than 131 giant and super-giant oil and gas fields with Palaeozoic source and reservoir that are similar to the Canning Basin. These include Palaeozoic basins of North America, North Africa, and the North Caspian Basin of Kazakhstan and Russia.The productivity of these Palaeozoic petroleum systems depends on timing of generation and preservation of charge. Thick Ordovician, Permian, and Triassic evaporite deposits played a very important role in creating and preserving the North American, north Caspian, and north African giant oil and gas fields, respectively.The Mesozoic–Tertiary charged Palaeozoic systems are typically more productive than the Palaeozoic charged systems as exemplified by the north African basins.The Ordovician sourced and reservoired giant oil fields of the North American Mid-Continent are also highly productive. Within the Canning Basin, Ordovician sourced oil has been recovered on the Barbwire Terrace (in Dodonea–1, Percival–1 and Solanum–1) on the Dampier Terrace (in Edgar Range–1 and Pictor–1) and along the Admiral Bay Fault Zone (in Cudalgarra–1, Great Sandy–1, and Leo–1).The Canning Basin may be the least explored of the known Palaeozoic basins with proven petroleum systems. The Palaeozoic basins of North America are the most explored with 500-wells/10,000 km2 compared to the Canning Basin with only 4-wells/10,000 km2.The presence of five oil fields, numerous oil and gas shows and the well density in the Canning Basin (200 wells in 530,000 km2) suggests that further exploration is warranted. Critical analysis of the distribution of source rock, reservoir, seal, timing of generation versus trap formation and post accumulation modification for each tectonic unit of the Canning Basin is required.


Sign in / Sign up

Export Citation Format

Share Document