scholarly journals Potential climatic impacts and reliability of very large-scale wind farms

2010 ◽  
Vol 10 (4) ◽  
pp. 2053-2061 ◽  
Author(s):  
C. Wang ◽  
R. G. Prinn

Abstract. Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.

2009 ◽  
Vol 9 (5) ◽  
pp. 19081-19102 ◽  
Author(s):  
C. Wang ◽  
R. G. Prinn

Abstract. Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.


2020 ◽  
Author(s):  
Paula Gonzalez ◽  
David Brayshaw ◽  
Reinhard Schiemann

<div> <p>With higher penetration of renewable energies and the effort to decarbonize power production there is a strong interest in the objective characterization of wind resource. Over Europe, wind power accounts for around 17% of total power capacity and almost 30% of renewable capacity and is the overall second largest form of generation capacity after gas. </p> </div><div> <p>In addition to the description of mean capacity factors, there is a need to characterize extremes. Low wind events and persistent low wind events (LWE) are of particular interest because during these the energy system needs to rely on ‘backup’ sources such as gas, coal and nuclear. Over the United Kingdom and other parts of Europe, these are often linked to the occurrence of blocking (e.g., Brayshaw et al. 2012, Cannon et al. 2015, Grams et al. 2017), which is the initial focus of this study. Additionally, blocking events have an impact on near-surface temperatures over Europe, which implies an effect in weather-dependent energy demand. </p> </div><div> <p>This study focuses on the impacts of blocking conditions on low wind events and their persistence, and the representation of these effects on the high-resolution (around 25km) global PRIMAVERA models. Our results confirm that blocking events over Europe have a significant impact on the occurrence and duration of low wind speeds at the country level, which is of relevance to the energy sector. In addition to becoming more frequent, LWE are also more persistent under blocking conditions over large areas of Europe. Both effects are in general captured by most of the PRIMAVERA GCMs analysed here, revealing that when the models do get the blocking events, the basic dynamical connection with wind anomalies is present. Nonetheless, the fact that the simulated weather conditions have deficiencies introduces biases in the properties of the events and their joint occurrence.  </p> </div><div> <p>The errors in the models depend on the statistic, the country and the resolution, but some consistent bias patterns can be observed at times (e.g., North-South dipolar structures). No robust improvements in the representation of these effects were observed in the high-resolution versions of the PRIMAVERA models, nor where the highest resolution runs consistently outperforming coarser simulations.  </p> </div><div> <p>Blocking impacts to the energy systems are not only limited to wind power generation, since these large-scale anomalies also have an impact on near-surface temperature and therefore on electricity demand. These effects are also addressed here.</p> </div>


Inventions ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 59
Author(s):  
Hasanali Khojasteh ◽  
Younes Noorollahi ◽  
Mojtaba Tahani ◽  
Mehran Masdari

Nowadays, by increasing energy demand and considering the importance of environmental issues in recent decades, the use of renewable energies is expanding. Among renewable energies, wind power and its technology are growing and evolving more rapidly. Resource assessment in Iran has revealed the significant potential of wind energy around the country. To further develop wind energy in the country and create large-scale wind power plants, the consideration of distributed power generation using small wind turbines for applications in agricultural and residential use is needed. Conventional small wind turbines and small wind lens turbines have been developed in recent years. In this research project, a small wind lens turbine is designed. The advantages of this turbine are an increased production capacity and reduced cut-in speed and noise pollution. In this study, a lens (or shroud) is added to a small turbine, and the maximized annual energy production (AEP) and minimization of the levelized cost of energy (LCOE) are modeled. We applied the NSGA-II algorithm for optimization to find the best answer. The input parameters in the objective function of the AEP are cut-in, cut-out, rated speeds, scale factor, and shape factor. Additionally, the input parameters in the objective function of the LCOE are the power production, initial capital cost, annual operating expenses, and balance of energy. The results indicate that installing a wind lens turbine in Kish Island led to an LCOE decrease of 56% on average, and we can see an 83% increase in the AEP. In the Firoozkooh area, an average reduction of 59% in the LCOE and 74% increase in the AEP for a wind lens turbine is observed.


2011 ◽  
Vol 24 (24) ◽  
pp. 6283-6306 ◽  
Author(s):  
Ivana Cerovečki ◽  
Lynne D. Talley ◽  
Matthew R. Mazloff

Abstract The authors have intercompared the following six surface buoyancy flux estimates, averaged over the years 2005–07: two reanalyses [the recent ECMWF reanalysis (ERA-Interim; hereafter ERA), and the National Centers for Environmental Prediction (NCEP)–NCAR reanalysis 1 (hereafter NCEP1)], two recent flux products developed as an improvement of NCEP1 [the flux product by Large and Yeager and the Southern Ocean State Estimate (SOSE)], and two ad hoc air–sea flux estimates that are obtained by combining the NCEP1 or ERA net radiative fluxes with turbulent flux estimates using the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk formulas with NCEP1 or ERA input variables. The accuracy of SOSE adjustments of NCEP1 atmospheric fields (which SOSE uses as an initial guess and a constraint) was assessed by verification that SOSE reduces the biases in the NCEP1 fluxes as diagnosed by the Working Group on Air–Sea Fluxes (Taylor), suggesting that oceanic observations may be a valuable constraint to improve atmospheric variables. Compared with NCEP1, both SOSE and Large and Yeager increase the net ocean heat loss in high latitudes, decrease ocean heat loss in the subtropical Indian Ocean, decrease net evaporation in the subtropics, and decrease net precipitation in polar latitudes. The large-scale pattern of SOSE and Large and Yeager turbulent heat flux adjustment is similar, but the magnitude of SOSE adjustments is significantly larger. Their radiative heat flux adjustments patterns differ. Turbulent heat fluxes determined by combining COARE bulk formulas with NCEP1 or ERA should not be combined with unmodified NCEP1 or ERA radiative fluxes as the net ocean heat gain poleward of 25°S becomes unrealistically large. The other surface flux products (i.e., NCEP1, ERA, Large and Yeager, and SOSE) balance more closely. Overall, the statistical estimates of the differences between the various air–sea heat flux products tend to be largest in regions with strong ocean mesoscale activity such as the Antarctic Circumpolar Current and the western boundary currents.


2017 ◽  
Vol 11 (6) ◽  
pp. 2897-2918 ◽  
Author(s):  
Valentina Radić ◽  
Brian Menounos ◽  
Joseph Shea ◽  
Noel Fitzpatrick ◽  
Mekdes A. Tessema ◽  
...  

Abstract. As part of surface energy balance models used to simulate glacier melting, choosing parameterizations to adequately estimate turbulent heat fluxes is extremely challenging. This study aims to evaluate a set of four aerodynamic bulk methods (labeled as C methods), commonly used to estimate turbulent heat fluxes for a sloped glacier surface, and two less commonly used bulk methods developed from katabatic flow models. The C methods differ in their parameterizations of the bulk exchange coefficient that relates the fluxes to the near-surface measurements of mean wind speed, air temperature, and humidity. The methods' performance in simulating 30 min sensible- and latent-heat fluxes is evaluated against the measured fluxes from an open-path eddy-covariance (OPEC) method. The evaluation is performed at a point scale of a mountain glacier, using one-level meteorological and OPEC observations from multi-day periods in the 2010 and 2012 summer seasons. The analysis of the two independent seasons yielded the same key findings, which include the following: first, the bulk method, with or without the commonly used Monin–Obukhov (M–O) stability functions, overestimates the turbulent heat fluxes over the observational period, mainly due to a substantial overestimation of the friction velocity. This overestimation is most pronounced during the katabatic flow conditions, corroborating the previous findings that the M–O theory works poorly in the presence of a low wind speed maximum. Second, the method based on a katabatic flow model (labeled as the KInt method) outperforms any C method in simulating the friction velocity; however, the C methods outperform the KInt method in simulating the sensible-heat fluxes. Third, the best overall performance is given by a hybrid method, which combines the KInt approach with the C method; i.e., it parameterizes eddy viscosity differently than eddy diffusivity. An error analysis reveals that the uncertainties in the measured meteorological variables and the roughness lengths produce errors in the modeled fluxes that are smaller than the differences between the modeled and observed fluxes. This implies that further advances will require improvement to model theory rather than better measurements of input variables. Further data from different glaciers are needed to investigate any universality of these findings.


2011 ◽  
Vol 347-353 ◽  
pp. 2342-2346
Author(s):  
Rong Fu ◽  
Bao Yun Wang ◽  
Wan Peng Sun

With increasing installation capacity and wind farms penetration, wind power plays more important role in power systems, and the modeling of wind farms has become an interesting research topic. In this paper, a coherency-based equivalent model has been discussed for the doubly fed induction generator (DFIG). Firstly, the dynamic models of wind turbines, DFIG and the mechanisms are briefly introduced. Some existing dynamic equivalent methods such as equivalent wind model, variable speed wind turbine model, parameter identification method and modal equivalent method to be used in wind farm aggregation are discussed. Then, considering wind power fluctuations, a new equivalent model of a wind farm equipped with doubly-fed induction generators is proposed to represent the interactions of the wind farm and grid. The method proposed is based on aggregating the coherent group wind turbines into an equivalent one. Finally, the effectiveness of the equivalent model is demonstrated by comparison with the wind farm response obtained from the detailed model. The dynamic simulations show that the present model can greatly reduce the computation time and model complexity.


2015 ◽  
Vol 112 (36) ◽  
pp. 11169-11174 ◽  
Author(s):  
Lee M. Miller ◽  
Nathaniel A. Brunsell ◽  
David B. Mechem ◽  
Fabian Gans ◽  
Andrew J. Monaghan ◽  
...  

Wind turbines remove kinetic energy from the atmospheric flow, which reduces wind speeds and limits generation rates of large wind farms. These interactions can be approximated using a vertical kinetic energy (VKE) flux method, which predicts that the maximum power generation potential is 26% of the instantaneous downward transport of kinetic energy using the preturbine climatology. We compare the energy flux method to the Weather Research and Forecasting (WRF) regional atmospheric model equipped with a wind turbine parameterization over a 105 km2 region in the central United States. The WRF simulations yield a maximum generation of 1.1 We⋅m−2, whereas the VKE method predicts the time series while underestimating the maximum generation rate by about 50%. Because VKE derives the generation limit from the preturbine climatology, potential changes in the vertical kinetic energy flux from the free atmosphere are not considered. Such changes are important at night when WRF estimates are about twice the VKE value because wind turbines interact with the decoupled nocturnal low-level jet in this region. Daytime estimates agree better to 20% because the wind turbines induce comparatively small changes to the downward kinetic energy flux. This combination of downward transport limits and wind speed reductions explains why large-scale wind power generation in windy regions is limited to about 1 We⋅m−2, with VKE capturing this combination in a comparatively simple way.


2010 ◽  
Vol 10 (22) ◽  
pp. 11017-11096 ◽  
Author(s):  
M. G. Lawrence ◽  
J. Lelieveld

Abstract. Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects. An outlook is provided as a guideline for future research, pointing out particularly critical issues such as: resolving discrepancies between top down and bottom up emissions estimates; assessing the processing and aging of the pollutant outflow; developing a better understanding of the observed elevated pollutant layers and their relationship to local sea breeze and large scale monsoon circulations; and determining the impacts of the pollutant outflow on the Asian monsoon meteorology and the regional hydrological cycle, in particular the mountain cryospheric reservoirs and the fresh water supply, which in turn directly impact the lives of over a billion inhabitants of southern Asia.


2012 ◽  
Vol 51 (3) ◽  
pp. 583-597 ◽  
Author(s):  
Warren Helgason ◽  
John W. Pomeroy

AbstractWithin mountainous regions, estimating the exchange of sensible heat and water vapor between the surface and the atmosphere is an important but inexact endeavor. Measurements of the turbulence characteristics of the near-surface boundary layer in complex mountain terrain are relatively scarce, leading to considerable uncertainty in the application of flux-gradient techniques for estimating the surface turbulent heat and mass fluxes. An investigation of the near-surface boundary layer within a 7-ha snow-covered forest clearing was conducted in the Kananaskis River valley, located within the Canadian Rocky Mountains. The homogeneous measurement site was characterized as being relatively calm and sheltered; the wind exhibited considerable unsteadiness, however. Frequent wind gusts were observed to transport turbulent energy into the clearing, affecting the rate of energy transfer at the snow surface. The resulting boundary layer within the clearing exhibited perturbations introduced by the surrounding topography and land surface discontinuities. The measured momentum flux did not scale with the local aerodynamic roughness and mean wind speed profile, but rather was reflective of the larger-scale topographical disturbances. The intermittent nature of the flux-generating processes was evident in the turbulence spectra and cospectra where the peak energy was shifted to lower frequencies as compared with those observed in more homogeneous flat terrain. The contribution of intermittent events was studied using quadrant analysis, which revealed that 50% of the sensible and latent heat fluxes was contributed from motions that occupied less than 6% of the time. These results highlight the need for caution while estimating the turbulent heat and mass fluxes in mountain regions.


2014 ◽  
Vol 953-954 ◽  
pp. 518-521 ◽  
Author(s):  
Jin Liu ◽  
Shu Qiang Zhao

Large-scale wind turbine generators with power electronic converters that operate near series compensated transmission lines are susceptible to un-damped sub-synchronous oscillations. This sub-synchronous oscillation is called Sub-synchronous Control Interaction (SSCI). With the rapid development of wind power technology, SSCI emerges as a new sub-synchronous oscillation phenomenon. The first SSCI event occurred for a wind farm in America in2009, which resulted in damage to the wind turbines. The origin of SSCI is presented and its characteristics of different types of wind turbines are summarized. Then the research prospect on this field is explored.


Sign in / Sign up

Export Citation Format

Share Document