katabatic flow
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 7)

H-INDEX

20
(FIVE YEARS 1)

Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1651
Author(s):  
Stephen Drake ◽  
Chad Higgins ◽  
Eric Pardyjak

To examine spatial and temporal scales of katabatic flow, a distributed temperature sensing (DTS) optical fiber was deployed 2 km down a mild slope irregularly interrupted by small-scale drainage features as part of the Mountain Terrain Atmospheric Modeling and Observation (MATERHORN) experiment conducted at the U.S. Army Dugway Proving Ground, Utah. The fiber was suspended at two heights near the surface, enabling measurement of variations in lapse rate near the surface at meter-scale spatial resolution with 1-min temporal resolution. Experimental results derived from the DTS and tower-mounted instrumentation indicate that airflow through small-scale drainage features regulated the local cooling rate whereas topographic slope and distance along the drainage strongly influenced the larger-scale cooling rate. Empirical results indicate that local cooling rate decays exponentially after local sunset and basin-wide cooling rate decreases linearly with time. The difference in the functional form for cooling rate between local and basin-wide scales suggests that small-scale features have faster timescales that manifests most strongly shortly after local sunset. More generally, partitioning drainage flow by scale provides insight and a methodology for improved understanding of drainage flow in complex terrain.


Author(s):  
Xiaofeng Guo ◽  
Wei Yang ◽  
Zhiqiu Gao ◽  
Linlin Wang ◽  
Jinkyu Hong ◽  
...  

Author(s):  
Hassan Addom ◽  
Ammar Gaber ◽  
Abulgasim Idris

The objective of this study is to explain how the Neyo wind stream develops and how it can damage crops and endanger people’s lives in the Darfur Region of Sudan. Due to lack of official meteorological observations, the data was retrieved from NOAA Air Resources Laboratory (ARL) used by the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Three scenarios for katabatic flow were formulated. Forces acting on air parcels were calculated for different slope angles. HYSPLIT vertical soundings revealed a reservoir of dry air over the area. Air parcels moving down slope allow dry air to flow across the thermal inversion layer. Due to the moisture deficit between the down flowing air and the humid grass surface, the leaves get dehydrated.


2021 ◽  
Author(s):  
Varun Sharma ◽  
Franziska Gerber ◽  
Michael Lehning

<p>When a well-developed, high velocity katabatic flow draining down the ice sheet of Antarctica reaches the coast, it experiences an abrupt and rapid transition due to change in slope resulting in formation of a hydraulic jump. A remarkable manifestation of the hydraulic jump, given the ‘right’ surface conditions, is the large-scale entrainment and convergence of blowing snow particles within the hydraulic jump. This can result in formation of 100-1000 m high, highly localized ‘walls’ of snow in the air in an otherwise cloud-free sky.</p><p>Recent work by Vignon et al. (2020) has described in detail, the mechanisms resulting in the formation of hydraulic jumps and excitation of gravity waves during a particularly notable event at the Dumont d’Urville (DDU) station in August 2017. They used a combination of satellite images, mesoscale simulations with WRF and station measurements (including Micro Rain Radars) in their study, notably relying on the snow wall for diagnosing and quantifying the hydraulic jump in satellite images. On the other hand, relatively less importance was given towards the surface snow processes including the transport of snow particles in the wall.</p><p>In this presentation, we present results from simulations done using the recently developed CRYOWRF v1.0 to recreate the August 2017 episode at DDU and explicitly simulate the formation and the dynamics of the snow wall itself. CRYOWRF enhances the standard WRF model with the state-of-the-art surface snow modelling scheme SNOWPACK as well as a completely new blowing snow scheme. SNOWPACK essentially acts as a land surface model for the WRF atmospheric model, thus making a quantum leap over the existing snow cover models in WRF. Since SNOWPACK is a grain-scale snow model, it allows for the proper formulation of boundary conditions for simulating blowing snow dynamics.</p><p>Results show the formation of the snow wall due to large scale entrainment over a wide area of the ice sheet, the mass balance of the snow wall within the hydraulic jump and finally, the destruction of the snow wall and the ultimate fate of all the entrained snow. We also show results for the influence of the snow wall on the local surface radiation at DDU. Overall, we test the capabilities of CRYOWRF to simulate such a complex phenomenon and highlight possible applications now feasible due the tight coupling of an advanced snow cover model and a multi-scale, non-hydrostatic atmospheric flow solver.</p><p>Reference:</p><p>Vignon, Étienne, Ghislain Picard, Claudio Durán-Alarcón, Simon P. Alexander, Hubert Gallée, and Alexis Berne. " Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica". <em>Journal of the Atmospheric Sciences</em> 77.4 (2020): 1295-1312. <>.</p>


2020 ◽  
Vol 77 (4) ◽  
pp. 1295-1312 ◽  
Author(s):  
Étienne Vignon ◽  
Ghislain Picard ◽  
Claudio Durán-Alarcón ◽  
Simon P. Alexander ◽  
Hubert Gallée ◽  
...  

Abstract The offshore extent of Antarctic katabatic winds exerts a strong control on the production of sea ice and the formation of polynyas. In this study, we make use of a combination of ground-based remotely sensed and meteorological measurements at Dumont d’Urville (DDU) station, satellite images, and simulations with the Weather Research and Forecasting Model to analyze a major katabatic wind event in Adélie Land. Once well developed over the slope of the ice sheet, the katabatic flow experiences an abrupt transition near the coastal edge consisting of a sharp increase in the boundary layer depth, a sudden decrease in wind speed, and a decrease in Froude number from 3.5 to 0.3. This so-called katabatic jump manifests as a turbulent “wall” of blowing snow in which updrafts exceed 5 m s−1. The wall reaches heights of 1000 m and its horizontal extent along the coast is more than 400 km. By destabilizing the boundary layer downstream, the jump favors the trapping of a gravity wave train—with a horizontal wavelength of 10.5 km—that develops in a few hours. The trapped gravity waves exert a drag that considerably slows down the low-level outflow. Moreover, atmospheric rotors form below the first wave crests. The wind speed record measured at DDU in 2017 (58.5 m s−1) is due to the vertical advection of momentum by a rotor. A statistical analysis of observations at DDU reveals that katabatic jumps and low-level trapped gravity waves occur frequently over coastal Adélie Land. It emphasizes the important role of such phenomena in the coastal Antarctic dynamics.


2020 ◽  
Author(s):  
Étienne Vignon ◽  
Ghislain Picard ◽  
Claudio Durán-Alarcón ◽  
Simon P. Alexander ◽  
Hubert Gallée ◽  
...  

<p>The offshore extent of Antarctic katabatic winds exert a strong control on sea ice production and the formation of polynyas. In this study, we combine ground-based remotely-sensed and meteorological measurements at Dumont d’Urville (DDU) station, satellite images and simulations with the WRF model to analyze a major katabatic wind event in Adélie Land. Once developed over the slope of the ice sheet, the katabatic flow experiences an abrupt transition near the coastal edge. The transition consists in a sharp increase in the boundary layer depth, a sudden decrease in wind speed and a decrease in Froude number from 3.5 to 0.3. This so-called ‘katabatic jump’ visually manifests as a turbulent ‘wall’ of blowing snow in which updrafts exceed 5 m s −1 . The wall reaches heights of 1000 m and its horizontal extent along the coast is more than 400 km. By destabilizing the boundary-layer downstream, the jump favors the trapping of a gravity wave train  with an horizontal wavelength of 10.5 km. The trapped gravity waves exert a drag that significantly slows down the low-level outflow. Moreover, atmospheric rotors form below the first wave crests. The wind speed record measured at DDU in 2017 (58.5 m s −1 ) is due to the vertical advection of momentum by a rotor. A statistical analysis of observations at DDU reveals that katabatic jumps and low-level trapped gravity waves occur frequently over coastal Adélie Land. It emphasizes the important role of such phenomena in the coastal Antarctic dynamics.</p>


2018 ◽  
Vol 57 (4) ◽  
pp. 969-989 ◽  
Author(s):  
C. David Whiteman ◽  
Manuela Lehner ◽  
Sebastian W. Hoch ◽  
Bianca Adler ◽  
Norbert Kalthoff ◽  
...  

AbstractThe successive stages of nocturnal atmospheric structure inside a small isolated basin are investigated when a katabatically driven flow on an adjacent tilted plain advects cold air over the basin rim. Data came from Arizona’s Meteor Crater during intensive observing period 4 of the Second Meteor Crater Experiment (METCRAX II) when a mesoscale flow above the plain was superimposed on the katabatic flow leading to a flow acceleration and then deceleration over the course of the night. Following an overflow-initiation phase, the basin atmosphere over the upwind inner sidewall progressed through three stages as the katabatic flow accelerated: 1) a cold-air-intrusion phase in which the overflowing cold air accelerated down the upwind inner sidewall, 2) a bifurcation phase in which the katabatic stable layer lifted over the rim included both a nonnegatively buoyant upper layer that flowed horizontally over the basin and a negatively buoyant lower layer (the cold-air intrusion) that continued on the slope below to create a hydraulic jump at the foot of the sidewall, and 3) a final warm-air-intrusion phase in which shear instability in the upper overflowing layer produced a lee wave that brought warm air from the elevated residual layer downward into the basin. Strong winds during the third phase penetrated to the basin floor, stirring the preexisting, intensely stable, cold pool. Later in the night a wind direction change aloft decelerated the katabatic wind and the atmosphere progressed back through the bifurcation and cold-air-intrusion phases. A conceptual diagram illustrates the first four evolutionary phases.


2018 ◽  
Vol 57 (2) ◽  
pp. 435-455 ◽  
Author(s):  
C. David Whiteman ◽  
Manuela Lehner ◽  
Sebastian W. Hoch ◽  
Bianca Adler ◽  
Norbert Kalthoff ◽  
...  

AbstractThe interactions between a katabatic flow on a plain and a circular basin cut into the plain and surrounded by an elevated rim were examined during a 5-h steady-state period during the Second Meteor Crater Experiment (METCRAX II) to explain observed disturbances to the nocturnal basin atmosphere. The approaching katabatic flow split horizontally around Arizona’s Meteor Crater below a dividing streamline while, above the dividing streamline, an ~50-m-deep stable layer on the plain was carried over the 30–50-m rim of the basin. A flow bifurcation occurred over or just upwind of the rim, with the lowest portion of the stable layer having negative buoyancy relative to the air within the crater pouring continuously over the crater’s upwind rim and accelerating down the inner sidewall. The cold air intrusion was deepest and coldest over the direct upwind crater rim. Cold air penetration depths varied around the inner sidewall depending on the temperature deficit of the inflow relative to the ambient environment inside the crater. A shallow but extremely stable cold pool on the crater floor could not generally be penetrated by the inflow and a hydraulic jump–like feature formed on the lower sidewall as the flow approached the cold pool. The upper nonnegatively buoyant portion of the stable layer was carried horizontally over the crater, forming a neutrally stratified, low–wind speed cavity or wake in the lee of the upwind rim that extended downward into the crater over the upwind sidewall.


Sign in / Sign up

Export Citation Format

Share Document