A Comparison of Southern Ocean Air–Sea Buoyancy Flux from an Ocean State Estimate with Five Other Products

2011 ◽  
Vol 24 (24) ◽  
pp. 6283-6306 ◽  
Author(s):  
Ivana Cerovečki ◽  
Lynne D. Talley ◽  
Matthew R. Mazloff

Abstract The authors have intercompared the following six surface buoyancy flux estimates, averaged over the years 2005–07: two reanalyses [the recent ECMWF reanalysis (ERA-Interim; hereafter ERA), and the National Centers for Environmental Prediction (NCEP)–NCAR reanalysis 1 (hereafter NCEP1)], two recent flux products developed as an improvement of NCEP1 [the flux product by Large and Yeager and the Southern Ocean State Estimate (SOSE)], and two ad hoc air–sea flux estimates that are obtained by combining the NCEP1 or ERA net radiative fluxes with turbulent flux estimates using the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk formulas with NCEP1 or ERA input variables. The accuracy of SOSE adjustments of NCEP1 atmospheric fields (which SOSE uses as an initial guess and a constraint) was assessed by verification that SOSE reduces the biases in the NCEP1 fluxes as diagnosed by the Working Group on Air–Sea Fluxes (Taylor), suggesting that oceanic observations may be a valuable constraint to improve atmospheric variables. Compared with NCEP1, both SOSE and Large and Yeager increase the net ocean heat loss in high latitudes, decrease ocean heat loss in the subtropical Indian Ocean, decrease net evaporation in the subtropics, and decrease net precipitation in polar latitudes. The large-scale pattern of SOSE and Large and Yeager turbulent heat flux adjustment is similar, but the magnitude of SOSE adjustments is significantly larger. Their radiative heat flux adjustments patterns differ. Turbulent heat fluxes determined by combining COARE bulk formulas with NCEP1 or ERA should not be combined with unmodified NCEP1 or ERA radiative fluxes as the net ocean heat gain poleward of 25°S becomes unrealistically large. The other surface flux products (i.e., NCEP1, ERA, Large and Yeager, and SOSE) balance more closely. Overall, the statistical estimates of the differences between the various air–sea heat flux products tend to be largest in regions with strong ocean mesoscale activity such as the Antarctic Circumpolar Current and the western boundary currents.

2013 ◽  
Vol 26 (5) ◽  
pp. 1685-1701 ◽  
Author(s):  
Vassilis P. Papadopoulos ◽  
Yasser Abualnaja ◽  
Simon A. Josey ◽  
Amy Bower ◽  
Dionysios E. Raitsos ◽  
...  

Abstract The influence of the atmospheric circulation on the winter air–sea heat fluxes over the northern Red Sea is investigated during the period 1985–2011. The analysis based on daily heat flux values reveals that most of the net surface heat exchange variability depends on the behavior of the turbulent components of the surface flux (the sum of the latent and sensible heat). The large-scale composite sea level pressure (SLP) maps corresponding to turbulent flux minima and maxima show distinct atmospheric circulation patterns associated with each case. In general, extreme heat loss (with turbulent flux lower than −400 W m−2) over the northern Red Sea is observed when anticyclonic conditions prevail over an area extending from the Mediterranean Sea to eastern Asia along with a recession of the equatorial African lows system. Subcenters of high pressure associated with this pattern generate the required steep SLP gradient that enhances the wind magnitude and transfers cold and dry air masses from higher latitudes. Conversely, turbulent flux maxima (heat loss minimization with values from −100 to −50 W m−2) are associated with prevailing low pressures over the eastern Mediterranean and an extended equatorial African low that reaches the southern part of the Red Sea. In this case, a smooth SLP field over the northern Red Sea results in weak winds over the area that in turn reduce the surface heat loss. At the same time, southerlies blowing along the main axis of the Red Sea transfer warm and humid air northward, favoring heat flux maxima.


2020 ◽  
Vol 33 (7) ◽  
pp. 2757-2777 ◽  
Author(s):  
Veronica Tamsitt ◽  
Ivana Cerovečki ◽  
Simon A. Josey ◽  
Sarah T. Gille ◽  
Eric Schulz

AbstractWintertime surface ocean heat loss is the key process driving the formation of Subantarctic Mode Water (SAMW), but there are few direct observations of heat fluxes, particularly during winter. The Ocean Observatories Initiative (OOI) Southern Ocean mooring in the southeast Pacific Ocean and the Southern Ocean Flux Station (SOFS) in the southeast Indian Ocean provide the first concurrent, multiyear time series of air–sea fluxes in the Southern Ocean from two key SAMW formation regions. In this work we compare drivers of wintertime heat loss and SAMW formation by comparing air–sea fluxes and mixed layers at these two mooring locations. A gridded Argo product and the ERA5 reanalysis product provide temporal and spatial context for the mooring observations. Turbulent ocean heat loss is on average 1.5 times larger in the southeast Indian (SOFS) than in the southeast Pacific (OOI), with stronger extreme heat flux events in the southeast Indian leading to larger cumulative winter ocean heat loss. Turbulent heat loss events in the southeast Indian (SOFS) occur in two atmospheric regimes (cold air from the south or dry air circulating via the north), while heat loss events in the southeast Pacific (OOI) occur in a single atmospheric regime (cold air from the south). On interannual time scales, wintertime anomalies in net heat flux and mixed layer depth (MLD) are often correlated at the two sites, particularly when wintertime MLDs are anomalously deep. This relationship is part of a larger basin-scale zonal dipole in heat flux and MLD anomalies present in both the Indian and Pacific basins, associated with anomalous meridional atmospheric circulation.


2016 ◽  
Vol 29 (2) ◽  
pp. 439-454 ◽  
Author(s):  
Ute Hausmann ◽  
Arnaud Czaja ◽  
John Marshall

Abstract Sea surface temperature (SST) air–sea feedback strengths and associated decay time scales in the Southern Ocean (SO) are estimated from observations and reanalysis datasets of SST, air–sea heat fluxes, and ocean mixed layer depths. The spatial, seasonal, and scale dependence of the air–sea heat flux feedbacks is mapped in circumpolar bands and implications for SST persistence times are explored. It is found that the damping effect of turbulent heat fluxes dominates over that due to radiative heat fluxes. The turbulent heat flux feedback acts to damp SSTs in all bands and spatial scales and in all seasons, at rates varying between 5 and 25 W m−2 K−1, while the radiative heat flux feedback has a more uniform spatial distribution with a magnitude rarely exceeding 5 W m−2 K−1. In particular, the implied net air–sea feedback (turbulent + radiative) on SST south of the polar front, and in the region of seasonal sea ice, is as weak as 5–10 W m−2 K−1 in the summertime on large spatial scales. Air–sea interaction alone thus allows SST signals induced around Antarctica in the summertime to persist for several seasons. The damping effect of mixed layer entrainment on SST anomalies averages to approximately 20 W m−2 K−1 across the ACC bands in the summer-to-winter entraining season and thereby reduces summertime SST persistence to less than half of that predicted by air–sea interaction alone (i.e., 3–6 months).


2021 ◽  
Author(s):  
Hanna S. Rosenthal ◽  
Louise C. Biddle ◽  
Sebastiaan Swart ◽  
Sarah T. Gille ◽  
Matthew R. Mazloff

<p>The role of the Southern Ocean in the global heat and carbon cycle is fundamental towards our climate, but observational data to quantify air-sea fluxes, such as surface  heat  fluxes, are  still  scarce. In  order  to  investigate  the  effects  of  fine- scale oceanic fronts (0.1 km–10 km) on air-sea fluxes in the Southern Ocean, high-resolution  hydrographic  and  meteorological  data  collected  by  three  un-crewed surface vehicles (Saildrones) during their first Circumnavigation of Antarctica in 2019 was assessed. Comparisons of key variables from the in situ Saildrones datasets with those from ERA5 and a stationary mooring show good  agreement.  Temperature-driven density fronts were detected in the Saildrone data and their impact on the turbulent heat flux was quantified during steady atmospheric conditions.  Over 2000 surface ocean temperature dominated density fronts were detected at length-scales (i.e.  front width) ranging from sub-kilometer to mesoscale (order of 0.1 km–100 km). <br>Temperature-driven density fronts with a length scale (as seen from the Saildrones perspective ) smaller than 1 km contributed 75% and 51% of the sensible and latent heat flux changes, respectively. The direct link between the fronts and the impact on the heat fluxes decreases sharply  when the front length increases. This suggests that smaller (submesoscale) fronts have a larger impact on heat flux variability than larger (balanced) fronts . The parametrization of  these  fine-scale ocean-atmospheric processes  in  global climate  models  could  lead to more accurate  representations  of  the  heat  flux  variability both at local and global scale.</p>


2013 ◽  
Vol 43 (7) ◽  
pp. 1485-1511 ◽  
Author(s):  
Ivana Cerovečki ◽  
Lynne D. Talley ◽  
Matthew R. Mazloff ◽  
Guillaume Maze

Abstract Subantarctic Mode Water (SAMW) is examined using the data-assimilating, eddy-permitting Southern Ocean State Estimate, for 2005 and 2006. Surface formation due to air–sea buoyancy flux is estimated using Walin analysis, and diapycnal mixing is diagnosed as the difference between surface formation and transport across 30°S, accounting for volume change with time. Water in the density range 26.5 < σθ < 27.1 kg m−3 that includes SAMW is exported northward in all three ocean sectors, with a net transport of (18.2, 17.1) Sv (1 Sv ≡ 106 m3 s−1; for years 2005, 2006); air–sea buoyancy fluxes form (13.2, 6.8) Sv, diapycnal mixing removes (−14.5, −12.6) Sv, and there is a volume loss of (−19.3, −22.9) Sv mostly occurring in the strongest SAMW formation locations. The most vigorous SAMW formation is in the Indian Ocean by air–sea buoyancy flux (9.4, 10.9) Sv, where it is partially destroyed by diapycnal mixing (−6.6, −3.1) Sv. There is strong export to the Pacific, where SAMW is destroyed both by air–sea buoyancy flux (−1.1, −4.6) Sv and diapycnal mixing (−5.6, −8.4) Sv. In the South Atlantic, SAMW is formed by air–sea buoyancy flux (5.0, 0.5) Sv and is destroyed by diapycnal mixing (−2.3, −1.1) Sv. Peaks in air–sea flux formation occur at the Southeast Indian and Southeast Pacific SAMWs (SEISAMWs, SEPSAMWs) densities. Formation over the broad SAMW circumpolar outcrop windows is largely from denser water, driven by differential freshwater gain, augmented or decreased by heating or cooling. In the SEISAMW and SEPSAMW source regions, however, formation is from lighter water, driven by differential heat loss.


2021 ◽  
Vol 22 (10) ◽  
pp. 2547-2564
Author(s):  
Georg Lackner ◽  
Daniel F. Nadeau ◽  
Florent Domine ◽  
Annie-Claude Parent ◽  
Gonzalo Leonardini ◽  
...  

AbstractRising temperatures in the southern Arctic region are leading to shrub expansion and permafrost degradation. The objective of this study is to analyze the surface energy budget (SEB) of a subarctic shrub tundra site that is subject to these changes, on the east coast of Hudson Bay in eastern Canada. We focus on the turbulent heat fluxes, as they have been poorly quantified in this region. This study is based on data collected by a flux tower using the eddy covariance approach and focused on snow-free periods. Furthermore, we compare our results with those from six Fluxnet sites in the Arctic region and analyze the performance of two land surface models, SVS and ISBA, in simulating soil moisture and turbulent heat fluxes. We found that 23% of the net radiation was converted into latent heat flux at our site, 35% was used for sensible heat flux, and about 15% for ground heat flux. These results were surprising considering our site was by far the wettest site among those studied, and most of the net radiation at the other Arctic sites was consumed by the latent heat flux. We attribute this behavior to the high hydraulic conductivity of the soil (littoral and intertidal sediments), typical of what is found in the coastal regions of the eastern Canadian Arctic. Land surface models overestimated the surface water content of those soils but were able to accurately simulate the turbulent heat flux, particularly the sensible heat flux and, to a lesser extent, the latent heat flux.


2020 ◽  
Vol 37 (4) ◽  
pp. 589-603 ◽  
Author(s):  
Xiangzhou Song

AbstractSea surface currents are commonly neglected when estimating the air–sea turbulent heat fluxes in bulk formulas. Using buoy observations in the Bohai Sea, this paper investigated the effects of near-coast multiscale currents on the quantification of turbulent heat fluxes, namely, latent heat flux (LH) and sensible heat flux (SH). The maximum current reached 1 m s−1 in magnitude, and a steady northeastward current of 0.16 m s−1 appeared in the southern Bohai Strait. The predominant tidal signal was the semidiurnal current, followed by diurnal components. The mean absolute surface wind was from the northeast with a speed of approximately 3 m s−1. The surface winds at a height of 11 m were dominated by the East Asian monsoon. As a result of upwind flow, the monthly mean differences in LH and SH between the estimates with and without surface currents ranged from 1 to 2 W m−2 in July (stable boundary layer) and November (unstable boundary layer). The hourly differences were on average 10 W m−2 and ranged from 0 to 24 W m−2 due to changes in the relative wind speed by high-frequency rotating surface tidal currents. The diurnal variability in LH/SH was demonstrated under stable and unstable boundary conditions. Observations provided an accurate benchmark for flux comparisons. The newly updated atmospheric reanalysis products MERRA-2 and ERA5 were superior to the 1° OAFlux data at this buoy location. However, future efforts in heat flux computation are still needed to, for example, consider surface currents and resolve diurnal variations.


2019 ◽  
Vol 36 (9) ◽  
pp. 1849-1861
Author(s):  
Vidhi Bharti ◽  
Eric Schulz ◽  
Christopher W. Fairall ◽  
Byron W. Blomquist ◽  
Yi Huang ◽  
...  

Given the large uncertainties in surface heat fluxes over the Southern Ocean, an assessment of fluxes obtained by European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) product, the Australian Integrated Marine Observing System (IMOS) routine observations, and the Objectively Analyzed Air–Sea Heat Fluxes (OAFlux) project hybrid dataset is performed. The surface fluxes are calculated using the COARE 3.5 bulk algorithm with in situ data obtained from the NOAA Physical Sciences Division flux system during the Clouds, Aerosols, Precipitation, Radiation, and Atmospheric Composition over the Southern Ocean (CAPRICORN) experiment on board the R/V Investigator during a voyage (March–April 2016) in the Australian sector of the Southern Ocean (43°–53°S). ERA-Interim and OAFlux data are further compared with the Southern Ocean Flux Station (SOFS) air–sea flux moored surface float deployed for a year (March 2015–April 2016) at ~46.7°S, 142°E. The results indicate that ERA-Interim (3 hourly at 0.25°) and OAFlux (daily at 1°) estimate sensible heat flux H s accurately to within ±5 W m−2 and latent heat flux H l to within ±10 W m−2. ERA-Interim gives a positive bias in H s at low latitudes (<47°S) and in H l at high latitudes (>47°S), and OAFlux displays consistently positive bias in H l at all latitudes. No systematic bias with respect to wind or rain conditions was observed. Although some differences in the bulk flux algorithms are noted, these biases can be largely attributed to the uncertainties in the observations used to derive the flux products.


2019 ◽  
Vol 32 (8) ◽  
pp. 2397-2421 ◽  
Author(s):  
R. Justin Small ◽  
Frank O. Bryan ◽  
Stuart P. Bishop ◽  
Robert A. Tomas

Abstract A traditional view is that the ocean outside of the tropics responds passively to atmosphere forcing, which implies that air–sea heat fluxes are mainly driven by atmosphere variability. This paper tests this viewpoint using state-of-the-art air–sea turbulent heat flux observational analyses and a climate model run at different resolutions. It is found that in midlatitude ocean frontal zones the variability of air–sea heat fluxes is not predominantly driven by the atmosphere variations but instead is forced by sea surface temperature (SST) variations arising from intrinsic oceanic variability. Meanwhile in most of the tropics and subtropics wind is the dominant driver of heat flux variability, and atmosphere humidity is mainly important in higher latitudes. The predominance of ocean forcing of heat fluxes found in frontal regions occurs on scales of around 700 km or less. Spatially smoothing the data to larger scales results in the traditional atmosphere-driving case, while filtering to retain only small scales of 5° or less leads to ocean forcing of heat fluxes over most of the globe. All observational analyses examined (1° OAFlux; 0.25° J-OFURO3; 0.25° SeaFlux) show this general behavior. A standard resolution (1°) climate model fails to reproduce the midlatitude, small-scale ocean forcing of heat flux: refining the ocean grid to resolve eddies (0.1°) gives a more realistic representation of ocean forcing but the variability of both SST and of heat flux is too high compared to observational analyses.


2020 ◽  
Vol 33 (17) ◽  
pp. 7233-7253 ◽  
Author(s):  
Yuanlong Li ◽  
Weiqing Han ◽  
Fan Wang ◽  
Lei Zhang ◽  
Jing Duan

AbstractMulti-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.


Sign in / Sign up

Export Citation Format

Share Document