scholarly journals The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 2: Model sensitivity to the biomass burning inventories

2010 ◽  
Vol 10 (13) ◽  
pp. 5785-5795 ◽  
Author(s):  
K. M. Longo ◽  
S. R. Freitas ◽  
M. O. Andreae ◽  
A. Setzer ◽  
E. Prins ◽  
...  

Abstract. We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.

2007 ◽  
Vol 7 (3) ◽  
pp. 8571-8595 ◽  
Author(s):  
K. M. Longo ◽  
S. R. Freitas ◽  
A. Setzer ◽  
E. Prins ◽  
P. Artaxo ◽  
...  

Abstract. We describe an estimation technique for biomass burning emissions in South America based on a combination of remote sensing fire products and field observations. For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognostic of related tracer concentrations. Two other biomass burning inventories are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. Several evaluations of the model with the three emission estimations were performed, comparing results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. Model results with the methodology of estimation introduced in this paper show a relatively good agreement with the direct measurements and MOPITT data product; pointing out the reliability of the model from local to regional scales.


2009 ◽  
Vol 9 (8) ◽  
pp. 2843-2861 ◽  
Author(s):  
S. R. Freitas ◽  
K. M. Longo ◽  
M. A. F. Silva Dias ◽  
R. Chatfield ◽  
P. Silva Dias ◽  
...  

Abstract. We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.


2007 ◽  
Vol 7 (3) ◽  
pp. 8525-8569 ◽  
Author(s):  
S. R. Freitas ◽  
K. M. Longo ◽  
M. A. F. Silva Dias ◽  
R. Chatfield ◽  
P. Silva Dias ◽  
...  

Abstract. We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostic includes the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM2.5) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosonde and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.


2016 ◽  
Author(s):  
Saulo R. Freitas ◽  
Jairo Panetta ◽  
Karla M. Longo ◽  
Luiz F. Rodrigues ◽  
Demerval S. Moreira ◽  
...  

Abstract. We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System where different previous versions for weather, chemistry and carbon cycle were unified in a single integrated software system. The new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. Together with the description of the main features are examples of the quality of the transport scheme for scalars, radiative fluxes on surface and model simulation of rainfall systems over South America in different spatial resolutions using a scale-aware convective parameterization. Besides, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America are shown. Atmospheric chemistry examples present model performance in simulating near-surface carbon monoxide and ozone in Amazon Basin and Rio de Janeiro megacity. For tracer transport and dispersion, it is demonstrated the model capabilities to simulate the volcanic ash 3-d redistribution associated with the eruption of a Chilean volcano. Then, the gain of computational efficiency is described with some details. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding on its functionalities and skills are discussed. At last, we highlight the relevant contribution of this work on the building up of a South American community of model developers.


2017 ◽  
Vol 10 (1) ◽  
pp. 189-222 ◽  
Author(s):  
Saulo R. Freitas ◽  
Jairo Panetta ◽  
Karla M. Longo ◽  
Luiz F. Rodrigues ◽  
Demerval S. Moreira ◽  
...  

Abstract. We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry, and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface, and model simulation of rainfall systems over South America at different spatial resolutions using a scale aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America, are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in the Amazon Basin and the megacity of Rio de Janeiro. For tracer transport and dispersion, the model capabilities to simulate the volcanic ash 3-D redistribution associated with the eruption of a Chilean volcano are demonstrated. The gain of computational efficiency is described in some detail. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near-surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding both its functionalities and skills are discussed. Finally, we highlight the relevant contribution of this work to building a South American community of model developers.


2007 ◽  
Vol 20 (15) ◽  
pp. 3866-3887 ◽  
Author(s):  
Christopher L. Castro ◽  
Roger A. Pielke ◽  
Jimmy O. Adegoke ◽  
Siegfried D. Schubert ◽  
Phillip J. Pegion

Abstract Summer simulations over the contiguous United States and Mexico with the Regional Atmospheric Modeling System (RAMS) dynamically downscaling the NCEP–NCAR Reanalysis I for the period 1950–2002 (described in Part I of the study) are evaluated with respect to the three dominant modes of global SST. Two of these modes are associated with the statistically significant, naturally occurring interannual and interdecadal variability in the Pacific. The remaining mode corresponds to the recent warming of tropical sea surface temperatures. Time-evolving teleconnections associated with Pacific SSTs delay or accelerate the evolution of the North American monsoon. At the period of maximum teleconnectivity in late June and early July, there is an opposite relationship between precipitation in the core monsoon region and the central United States. Use of a regional climate model (RCM) is essential to capture this variability because of its representation of the diurnal cycle of convective rainfall. The RCM also captures the observed long-term changes in Mexican summer rainfall and suggests that these changes are due in part to the recent increase in eastern Pacific SST off the Mexican coast. To establish the physical linkage to remote SST forcing, additional RAMS seasonal weather prediction mode simulations were performed and these results are briefly discussed. In order for RCMs to be successful in a seasonal weather prediction mode for the summer season, it is required that the GCM provide a reasonable representation of the teleconnections and have a climatology that is comparable to a global atmospheric reanalysis.


2008 ◽  
Vol 8 (5) ◽  
pp. 16981-17036 ◽  
Author(s):  
T. Stavrakou ◽  
J.-F. Müller ◽  
I. De Smedt ◽  
M. Van Roozendael ◽  
G. R. van der Werf ◽  
...  

Abstract. A new one-decade dataset of formaldehyde (HCHO) columns retrieved from GOME and SCIAMACHY is compared with HCHO columns simulated by an updated version of the IMAGES global chemical transport model. This model version includes an optimized chemical scheme with respect to HCHO production, where the short-term and final HCHO yields from pyrogenically emitted non-methane volatile organic compounds (NMVOCs) are estimated from the Master Chemical Mechanism (MCM) and an explicit speciation profile of pyrogenic emissions. The model is driven by the Global Fire Emissions Database (GFED) version 1 or 2 for biomass burning, whereas biogenic emissions are provided either by the Global Emissions Inventory Activity (GEIA), or by a newly developed inventory based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) algorithms driven by meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). The comparisons focus on tropical ecosystems, North America and China, which experience strong biogenic and biomass burning NMVOC emissions reflected in the enhanced measured HCHO columns. These comparisons aim at testing the ability of the model to reproduce the observed features of the HCHO distribution on the global scale and at providing a first assessment of the performance of the current emission inventories. The high correlation coefficients (r>0.8) between the observed and simulated columns over most regions indicate a very good consistency between the model, the implemented inventories and the HCHO dataset. The use of the MEGAN-ECMWF inventory improves the model/data agreement in almost all regions, but biases persist over parts of Africa and the Northern Australia. Although neither GFED version is consistent with the data over all regions, a better match is achieved over Indonesia and Southern Africa when GFEDv2 is used, but GFEDv1 succeeds better in getting the correct seasonal patterns and intensities of the fire episodes over the Amazon basin, as reflected by the higher correlations calculated in this region.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 747 ◽  
Author(s):  
Scot Rafkin ◽  
Timothy Michaels

The Mars Regional Atmospheric Modeling System (MRAMS) is closing in on two decades of use as a tool to investigate mesoscale and microscale circulations and dynamics in the atmosphere of Mars. Over this period of time, there have been numerous improvements and additions to the model dynamical core, physical parameterizations, and framework. At the same time, the application of the model to Mars (and related code for other planets) has taught many lessons about limitations and cautions that should be exercised. The current state of MRAMS is described along with a review of prior studies and findings utilizing the model. Where appropriate, lessons learned are provided to help guide future users and aid in the design and interpretation of numerical experiments. The paper concludes with a discussion of future MRAMS development plans.


1992 ◽  
Vol 40 (5) ◽  
pp. 407 ◽  
Author(s):  
JA Taylor ◽  
J Lloyd

The biosphere plays an important role in determining the sources, sinks, levels and rates of change of atmospheric CO2 concentrations. Significant uncertainties remain in estimates of the fluxes of CO2 from biomass burning and deforestation, and uptake and storage of CO2 by the biosphere arising from increased atmospheric CO2 concentrations. Calculation of probable rates of carbon sequestration for the major ecosystem complexes and global 3-D tracer transport model runs indicate the possibility that a significant net CO2 uptake (> 1 Pg C yr-1), a CO2 'fertilisation effect', may be occurring in tropical rainforests, effectively accounting for much of the 'missing sink'. This sink may currently balance much of the CO2 added to the atmosphere from deforestation and biomass burning. Interestingly, CO2 released from biomass burning may itself be playing an important role in enhanced carbon storage by tropical rainforests. This has important implications for predicting future CO2 concentrations. If tropical rainforest destruction continues then much of the CO2 stored as a result of the CO2 'fertilisation effect' will be rereleased to the atmosphere and much of the 'missing sink' will disappear. These effects have not been considered in the IPCC (Intergovernmental Panel on Climate Change) projections of future atmospheric CO2 concentrations. Predictions which take account of the combined effects of deforestation, the return of carbon previously stored through the CO2 'fertilisation effect' and the loss of a large proportion of the 'missing sink' as a result of deforestation, would result in much higher predicted concentrations and rates of increase of atmospheric CO2 and, as a consequence, accelerated rates of climate change.


Sign in / Sign up

Export Citation Format

Share Document