scholarly journals Bromine measurements in ozone depleted air over the Arctic Ocean

2010 ◽  
Vol 10 (14) ◽  
pp. 6503-6514 ◽  
Author(s):  
J. A. Neuman ◽  
J. B. Nowak ◽  
L. G. Huey ◽  
J. B. Burkholder ◽  
J. E. Dibb ◽  
...  

Abstract. In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL). Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Fast (1 s) and sensitive (detection limits at the low pptv level) measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS) instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

2010 ◽  
Vol 10 (2) ◽  
pp. 3827-3860 ◽  
Author(s):  
J. A. Neuman ◽  
J. B. Nowak ◽  
L. G. Huey ◽  
J. B. Burkholder ◽  
J. E. Dibb ◽  
...  

Abstract. In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL). Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Fast (1 s) and sensitive (detection limits at the low pptv level) measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS) instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr+Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2-pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.


2009 ◽  
Vol 9 (2) ◽  
pp. 8561-8586
Author(s):  
J. W. Bottenheim ◽  
S. Netcheva ◽  
S. Morin ◽  
S. V. Nghiem

Abstract. A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N – 88° N latitude). The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June) after Polar sunrise. At other times of the year ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30–40 nmol mol−1 and summer minima of ca. 20 nmol mol−1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above −20°C during most ODEs (ozone depletion episodes). Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads developed in the spring of 2007.


2021 ◽  
Vol 60 (4) ◽  
pp. 493-511
Author(s):  
Liang Chang ◽  
Shiqiang Wen ◽  
Guoping Gao ◽  
Zhen Han ◽  
Guiping Feng ◽  
...  

AbstractCharacteristics of temperature inversions (TIs) and specific humidity inversions (SHIs) and their relationships in three of the latest global reanalyses—the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), the Japanese 55-year Reanalysis (JRA-55), and the ERA5—are assessed against in situ radiosonde (RS) measurements from two expeditions over the Arctic Ocean. All reanalyses tend to detect many fewer TI and SHI occurrences, together with much less common multiple TIs and SHIs per profile than are seen in the RS data in summer 2008, winter 2015, and spring 2015. The reanalyses generally depict well the relationships among TI characteristics seen in RS data, except for the TIs below 400 m in summer, as well as above 1000 m in summer and winter. The depth is simulated worst by the reanalyses among the SHI characteristics, which may result from its sensitivity to the uncertainties in specific humidity in the reanalyses. The strongest TI per profile in RS data exhibits more robust dependency on surface conditions than the strongest SHI per profile, and the former is better presented by the reanalyses than the latter. Furthermore, all reanalyses have difficulties simulating the relationships between TIs and SHIs, together with the correlations between the simultaneous inversions. The accuracy and vertical resolution in the reanalyses are both important to properly capture occurrence and characteristics of the Arctic inversions. In general, ERA5 performs better than ERA-I and JRA-55 in depicting the relationships among the TIs. However, the representation of SHIs is more challenging than TIs in all reanalyses over the Arctic Ocean.


2020 ◽  
Vol 125 (13) ◽  
Author(s):  
Ding Wang ◽  
Jianping Guo ◽  
Aijun Chen ◽  
Lingen Bian ◽  
Minghu Ding ◽  
...  

2019 ◽  
Author(s):  
Antoine Berchet ◽  
Isabelle Pison ◽  
Patrick M. Crill ◽  
Brett Thornton ◽  
Philippe Bousquet ◽  
...  

Abstract. Due to the large variety and heterogeneity of sources in remote areas hard to document, the Arctic regional methane budget remain very uncertain. In situ campaigns provide valuable data sets to reduce these uncertainties. Here we analyse data from the SWERUS-C3 campaign, on-board the icebreaker Oden, that took place during summer 2014 in the Arctic Ocean along the Northern Siberian and Alaskan shores. Total concentrations of methane, as well as isotopic ratios were measured continuously during this campaign for 35 days in July and August 2014. Using a chemistry-transport model, we link observed concentrations and isotopic ratios to regional emissions and hemispheric transport structures. A simple inversion system helped constraining source signatures from wetlands in Siberia and Alaska and oceanic sources, as well as the isotopic composition of lower stratosphere air masses. The variation in the signature of low stratosphere air masses, due to strongly fractionating chemical reactions in the stratosphere, was suggested to explain a large share of the observed variability in isotopic ratios. These points at required efforts to better simulate large scale transport and chemistry patterns to use isotopic data in remote areas. It is found that constant and homogeneous source signatures for each type of emission in the region (mostly wetlands and oil and gas industry) is not compatible with the strong synoptic isotopic signal observed in the Arctic. A regional gradient in source signatures is highlighted between Siberian and Alaskan wetlands, the later ones having a lighter signatures than the first ones. Arctic continental shelf sources are suggested to be a mixture of methane from a dominant thermogenic origin and a secondary biogenic one, consistent with previous in-situ isotopic analysis of seepage along the Siberian shores.


2020 ◽  
Author(s):  
Roberta Pirazzini ◽  
Michael Tjernström ◽  
Stein Sandven ◽  
Hanne Sagen ◽  
Torill Hamre ◽  
...  

<p>A comprehensive assessment of a substantial subset of Arctic observing systems, data collections and satellite products across scientific disciplines was carried out in INTAROS, also including data repositories and a brief scientific gap analysis. The assessments cover a multitude of aspects such as sustainability, technical maturity and data handling for the entire chain from observation to users, including metadata procedures and availability to data. Community based environment monitoring programs were surveyed and assessed separately; they do not form part of the present assessment.</p><p>The assessed observing systems were first ranked according to general sustainability and other aspects, were analyzed subsequently. While the range of sustainability is large, it was found that high scores on all other aspects, such as for data handling and technical maturity, are more likely for systems with high sustainability. Moreover, many systems with high sustainability, as well as advanced systems for data handling and availability in place, resulted from national commitments to international monitoring or infrastructure programs, several of which are not necessarily particular to the Arctic.</p><p>Traditionally, terrestrial and atmospheric observation network assessments build on the network concept with a “comprehensive” level including all observations, a “baseline” level of an agreed subset of sustained observations, and a “reference” level, with observations adhering to specific calibrations and traceability criteria. Examples from atmospheric observations are the “comprehensive” global GCOS radiosounding network, the “baseline” GUAN (GCOS Upper Air Network) and “reference” GRUAN (GCOS Reference Upper Air Network) networks. With the lack of in-situ observations especially from the Arctic Ocean and the logistical difficulties to deploy new stations, it was concluded that this concept does not work well in the Arctic.</p><p>In summary, we recommend that:</p><ul><li>advancement in Arctic observing should be done in international global or regional programs with well-established routines and procedures, rather than to invest in new Arctic-specific programs</li> <li>investments in new instruments and techniques be done at already established sites, to benefit interdisciplinary studies and optimize infrastructure costs</li> <li>more observations be based on ships of opportunity and that a subset of ocean, sea-ice and atmosphere observations always be made on all research expeditions, regardless of their scientific aim</li> <li>the funding structures for science expeditions is reviewed to maintain, and preferably increase, the number of expeditions and to safeguard funding for appropriate data handling and storage</li> <li>observing-network concept for the atmosphere over the Arctic Ocean is revised, so that coupled reanalyses represent the “comprehensive level”, satellite observations complemented with available in-situ data is the “baseline level”, while scientific expeditions is the “reference level”. This requires substantial improvements in reanalysis, better numerical models and data assimilation, better satellite observations and improved data handling and accessibility for scientific expeditions.</li> </ul>


2010 ◽  
Vol 44 (22) ◽  
pp. 8422-8428 ◽  
Author(s):  
Xiaoguo Wu ◽  
James C. W. Lam ◽  
Chonghuan Xia ◽  
Hui Kang ◽  
Liguang Sun ◽  
...  

Polar Biology ◽  
2004 ◽  
Vol 28 (3) ◽  
pp. 207-217 ◽  
Author(s):  
K. A. Raskoff ◽  
J. E. Purcell ◽  
R. R. Hopcroft

2013 ◽  
Vol 110 ◽  
pp. 107-125 ◽  
Author(s):  
Victoria J. Hill ◽  
Patricia A. Matrai ◽  
Elise Olson ◽  
S. Suttles ◽  
Mike Steele ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Sarah B. Hall ◽  
Bulusu Subrahmanyam ◽  
James H. Morison

Salinity is the primary determinant of the Arctic Ocean’s density structure. Freshwater accumulation and distribution in the Arctic Ocean have varied significantly in recent decades and certainly in the Beaufort Gyre (BG). In this study, we analyze salinity variations in the BG region between 2012 and 2017. We use in situ salinity observations from the Seasonal Ice Zone Reconnaissance Surveys (SIZRS), CTD casts from the Beaufort Gyre Exploration Project (BGP), and the EN4 data to validate and compare with satellite observations from Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS), and Aquarius Optimally Interpolated Sea Surface Salinity (OISSS), and Arctic Ocean models: ECCO, MIZMAS, HYCOM, ORAS5, and GLORYS12. Overall, satellite observations are restricted to ice-free regions in the BG area, and models tend to overestimate sea surface salinity (SSS). Freshwater Content (FWC), an important component of the BG, is computed for EN4 and most models. ORAS5 provides the strongest positive SSS correlation coefficient (0.612) and lowest bias to in situ observations compared to the other products. ORAS5 subsurface salinity and FWC compare well with the EN4 data. Discrepancies between models and SIZRS data are highest in GLORYS12 and ECCO. These comparisons identify dissimilarities between salinity products and extend challenges to observations applicable to other areas of the Arctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document