scholarly journals Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

2011 ◽  
Vol 11 (17) ◽  
pp. 9037-9052 ◽  
Author(s):  
G. R. McMeeking ◽  
W. T. Morgan ◽  
M. Flynn ◽  
E. J. Highwood ◽  
K. Turnbull ◽  
...  

Abstract. Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9–0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.

2011 ◽  
Vol 11 (5) ◽  
pp. 14991-15027 ◽  
Author(s):  
G. R. McMeeking ◽  
W. T. Morgan ◽  
M. Flynn ◽  
E. J. Highwood ◽  
K. Turnbull ◽  
...  

Abstract. Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9–0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations.


2006 ◽  
Vol 6 (11) ◽  
pp. 3257-3280 ◽  
Author(s):  
A. Hodzic ◽  
R. Vautard ◽  
P. Chazette ◽  
L. Menut ◽  
B. Bessagnet

Abstract. Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%), and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust accounts for 8%. The comparison demonstrates the absence of systematic errors in the simulated sulfate, ammonium and nitrates total concentrations. However, for nitrates the observed partition between fine and coarse mode is not reproduced. In CHIMERE there is a clear lack of coarse-mode nitrates. This calls for additional parameterizations in order to account for the heterogeneous formation of nitrate onto dust particles. Larger discrepancies are obtained for the secondary organic aerosols due to both inconsistencies in the SOA formation processes in the model leading to an underestimation of their mass and large uncertainties in the determination of the measured aerosol organic fraction. The observed mass distribution of aerosols is not well reproduced, although no clear explanation can be given.


2006 ◽  
Vol 6 (1) ◽  
pp. 401-454 ◽  
Author(s):  
A. Hodzic ◽  
R. Vautard ◽  
P. Chazette ◽  
L. Menut ◽  
B. Bessagnet

Abstract. Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environment against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce fairly well the plume structure and location both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirmed the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicated that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated of about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%) and inorganic aerosol fraction (40%) including nitrate (8%), sulfate (22%) and ammonium (10%). The secondary organic aerosols (SOA) represent 12% of the total aerosol mass, while the mineral dust accounts for 8%. The comparison demonstrated the absence of systematic errors in the simulated sulfate, ammonium and nitrates total concentrations. However for nitrates the observed partition between fine and coarse mode is not reproduced. In CHIMERE there is a clear lack of coarse-mode nitrates. This calls for additional parameterizations in order to account for the heterogeneous formation of nitrate onto dust particles. Larger discrepancies are obtained for the secondary organic aerosols due to both inconsistencies in the SOA formation processes in the model leading to an underestimation of their mass and large uncertainties in the determination of the measured aerosol organic fraction. The observed mass distribution of aerosols is not well reproduced, although no clear explanation can be given.


2016 ◽  
Vol 16 (7) ◽  
pp. 4693-4706 ◽  
Author(s):  
Megan D. Willis ◽  
Robert M. Healy ◽  
Nicole Riemer ◽  
Matthew West ◽  
Jon M. Wang ◽  
...  

Abstract. The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol (HOA) in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particle classes was  < 0.1 and 0.8, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.


2015 ◽  
Vol 15 (22) ◽  
pp. 33555-33582 ◽  
Author(s):  
M. D. Willis ◽  
R. M. Healy ◽  
N. Riemer ◽  
M. West ◽  
J. M. Wang ◽  
...  

Abstract. The climatic impacts of black carbon (BC) aerosol, an important absorber of solar radiation in the atmosphere, remain poorly constrained and are intimately related to its particle-scale physical and chemical properties. Using particle-resolved modelling informed by quantitative measurements from a soot-particle aerosol mass spectrometer, we confirm that the mixing state (the distribution of co-emitted aerosol amongst fresh BC-containing particles) at the time of emission significantly affects BC-aerosol optical properties even after a day of atmospheric processing. Both single particle and ensemble aerosol mass spectrometry observations indicate that BC near the point of emission co-exists with hydrocarbon-like organic aerosol in two distinct particle types: HOA-rich and BC-rich particles. The average mass fraction of black carbon in HOA-rich and BC-rich particles was 0.02–0.08 and 0.72–0.93, respectively. Notably, approximately 90 % of BC mass resides in BC-rich particles. This new measurement capability provides quantitative insight into the physical and chemical nature of BC-containing particles and is used to drive a particle-resolved aerosol box model. Significant differences in calculated single scattering albedo (an increase of 0.1) arise from accurate treatment of initial particle mixing state as compared to the assumption of uniform aerosol composition at the point of BC injection into the atmosphere.


2018 ◽  
Author(s):  
Rishabh U. Shah ◽  
Ellis S. Robinson ◽  
Peishi Gu ◽  
Allen Robinson ◽  
Joshua S. Apte ◽  
...  

Abstract. We investigated spatial and temporal patterns in concentration and composition of sub-micron particulate matter (PM1) in Oakland, California in the summer of 2017 using an aerosol mass spectrometer mounted in a mobile laboratory. We performed ∼ 160 hours of mobile sampling in the city over a 20-day period. Measurements are compared for three adjacent neighborhoods with distinct land uses: a central business district (downtown), a residential district (West Oakland), and a major shipping port. The average organic aerosol (OA) concentration is 5.3 μgm−3 and contributes ∼ 50 % of the PM1 mass. OA concentrations in downtown are, on average, 1.5 μgm−3 higher than in West Oakland and Port. We decomposed OA into three factors using positive matrix factorization: hydrocarbon-like OA (HOA; 20 % average contribution), cooking OA (COA; 25 %) and semi-volatile oxidized OA (SV-OOA; 55 %). The collective 45 % contribution from primary OA (HOA + COA) emphasizes the importance of primary emissions in Oakland. The dominant source of primary OA shifts from HOA-rich in the morning to COA-rich after lunch time. COA in downtown is consistently higher than West Oakland and Port due to a large number of restaurants. HOA exhibits variability in space and time. Morning-time HOA concentration in downtown is twice that in Port, but Port HOA increases more than two-fold during mid-day, likely because trucking activity at the Port peaks at that time. Despite the expectation of being spatially uniform, SV-OOA also exhibits spatial differences. Morning-time SV-OOA in downtown is roughly 25 % (∼ 0.6 μgm−3) higher than the rest of Oakland. Even as the entire domain approaches a more uniform photo-chemical state in the afternoon, downtown SV-OOA remains statistically higher than West Oakland and Port, suggesting that downtown is a microenvironment with higher photochemical activity. Higher concentrations of particulate sulfate (also of secondary origin) with no direct sources in Oakland further reflect higher photochemical activity in downtown. A combination of several factors (poor ventilation of air masses in street canyons, higher concentrations of precursor gases, higher concentrations of the hydroxyl radical) likely result in the proposed high photochemical activity in downtown. Lastly, through Van Krevelen analysis of elemental ratios (H/C, O/C) of the OA, we show that OA in Oakland is more chemically reduced than several other urban areas. This underscores the importance of primary emissions in Oakland. We also show that mixing of oceanic air masses with these primary emissions in Oakland is an important processing mechanism that governs the overall OA composition in Oakland. The findings of this study are important because the pollutants we find contributing the most to OA variability, both of primary and secondary origin, are ubiquitous in other urban locations.


2021 ◽  
Author(s):  
Jing Cai ◽  
Cheng Wu ◽  
Jiandong Wang ◽  
Wei Du ◽  
Feixue Zheng ◽  
...  

Abstract. Organic aerosol (OA) is a major component of fine particulate matter (PM) affecting air quality, human health, and the climate. The absorptive and reflective behavior of OA components contributes to determining particle optical properties and thus their effects on the radiative budget of the troposphere. There is limited knowledge on the influence of the molecular composition of OA on particle optical properties in the polluted urban environment. In this study, we characterized the molecular composition of oxygenated OA collected on filter samples in autumn of 2018 in Beijing, China, with a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). Three haze episodes occurred during our sampling period with daily maximum concentrations of OA of 50, 30, and 55 µg m−3, respectively. We found that the signal intensities of dicarboxylic acids and sulfur-containing compounds increased during the two more intense haze episodes, while the relative contributions of wood-burning markers and other aromatic compounds were enhanced during the cleaner periods. We further assessed the optical properties of oxygenated OA components by combining the detailed chemical composition measurements with collocated particle light absorption measurements. We show that light-absorption enhancement (Eabs) of black carbon (BC) was mostly related to more oxygenated OA (e.g. dicarboxylic acids), likely formed in aqueous-phase reactions during the intense haze periods with higher relative humidity, and speculate that they might contribute to lensing effects. Aromatics and nitro-aromatics (e.g. nitrocatechol and its derivatives) were mostly related to a high light absorption coefficient (babs) consistent with light-absorbing (brown) carbon (BrC). Our results provide information on oxygenated OA components at the molecular level associated with BrC and BC particle light-absorption and can serve as a basis for further studies on the effects of anthropogenic OA on radiative forcing in the urban environment.


2018 ◽  
Vol 18 (22) ◽  
pp. 16325-16344 ◽  
Author(s):  
Rishabh U. Shah ◽  
Ellis S. Robinson ◽  
Peishi Gu ◽  
Allen L. Robinson ◽  
Joshua S. Apte ◽  
...  

Abstract. We investigated spatial and temporal patterns in the concentration and composition of submicron particulate matter (PM1) in Oakland, California, in the summer of 2017 using an aerosol mass spectrometer mounted in a mobile laboratory. We performed ∼160 h of mobile sampling in the city over a 20-day period. Measurements are compared for three adjacent neighborhoods with distinct land uses: a central business district (“downtown”), a residential district (“West Oakland”), and a major shipping port (“port”). The average organic aerosol (OA) concentration is 5.3 µg m−3 and contributes ∼50 % of the PM1 mass. OA concentrations in downtown are, on average, 1.5 µg m−3 higher than in West Oakland and port. We decomposed OA into three factors using positive matrix factorization: hydrocarbon-like OA (HOA; 20 % average contribution), cooking OA (COA; 25 %), and less-oxidized oxygenated OA (LO-OOA; 55 %). The collective 45 % contribution from primary OA (HOA + COA) emphasizes the importance of primary emissions in Oakland. The dominant source of primary OA shifts from HOA-rich in the morning to COA-rich after lunchtime. COA in downtown is consistently higher than West Oakland and port due to a large number of restaurants. HOA exhibits variability in space and time. The morning-time HOA concentration in downtown is twice that in port, but port HOA increases more than two-fold during midday, likely because trucking activity at the port peaks at that time. While it is challenging to mathematically apportion traffic-emitted OA between drayage trucks and cars, combining measurements of OA with black carbon and CO suggests that while trucks have an important effect on OA and BC at the port, gasoline-engine cars are the dominant source of traffic emissions in the rest of Oakland. Despite the expectation of being spatially uniform, LO-OOA also exhibits spatial differences. Morning-time LO-OOA in downtown is roughly 25 % (∼0.6 µg m−3) higher than the rest of Oakland. Even as the entire domain approaches a more uniform photochemical state in the afternoon, downtown LO-OOA remains statistically higher than West Oakland and port, suggesting that downtown is a microenvironment with higher photochemical activity. Higher concentrations of particulate sulfate (also of secondary origin) with no direct sources in Oakland further reflect higher photochemical activity in downtown. A combination of several factors (poor ventilation of air masses in street canyons, higher concentrations of precursor gases, higher concentrations of the hydroxyl radical) likely results in the proposed high photochemical activity in downtown. Lastly, through Van Krevelen analysis of the elemental ratios (H ∕ C, O ∕ C) of the OA, we show that OA in Oakland is more chemically reduced than several other urban areas. This underscores the importance of primary emissions in Oakland. We also show that mixing of oceanic air masses with these primary emissions in Oakland is an important processing mechanism that governs the overall OA composition in Oakland.


Sign in / Sign up

Export Citation Format

Share Document