scholarly journals Development of the RAQM2 aerosol chemical transport model and predictions of the Northeast Asian aerosol mass, size, chemistry, and mixing type

2012 ◽  
Vol 12 (24) ◽  
pp. 11833-11856 ◽  
Author(s):  
M. Kajino ◽  
Y. Inomata ◽  
K. Sato ◽  
H. Ueda ◽  
Z. Han ◽  
...  

Abstract. A new aerosol chemical transport model, the Regional Air Quality Model 2 (RAQM2), was developed to simulate the Asian air quality. We implemented a simple version of a triple-moment modal aerosol dynamics model (MADMS) and achieved a completely dynamic (non-equilibrium) solution of a gas-to-particle mass transfer over a wide range of aerosol diameters from 1 nm to super-μm. To consider a variety of atmospheric aerosol properties, a category approach was utilized in which the aerosols were distributed into four categories: particles in the Aitken mode (ATK), soot-free particles in the accumulation mode (ACM), soot aggregates (AGR), and particles in the coarse mode (COR). The aerosol size distribution in each category is characterized by a single mode. The condensation, evaporation, and Brownian coagulations for each mode were solved dynamically. A regional-scale simulation (Δx = 60 km) was performed for the entire year of 2006 covering the Northeast Asian region. The modeled PM1/bulk ratios of the chemical components were consistent with observations, indicating that the simulated aerosol mixing types were consistent with those in nature. The non–sea-salt SO42− mixed with ATK + ACM was the largest at Hedo in summer, whereas the SOSO42− was substantially mixed with AGR in the cold seasons. Ninety-eight percent of the modeled NO3− was mixed with sea salt at Hedo, whereas 53.7% of the NO3− was mixed with sea salt at Gosan, which is located upwind toward the Asian continent. The condensation of HNO3 onto sea salt particles during transport over the ocean accounts for the difference in the NO3− mixing type at the two sites. Because the aerosol mixing type alters the optical properties and cloud condensation nuclei activity, its accurate prediction and evaluation are indispensable for aerosol-cloud-radiation interaction studies.

2012 ◽  
Vol 12 (5) ◽  
pp. 13405-13456 ◽  
Author(s):  
M. Kajino ◽  
Y. Inomata ◽  
K. Sato ◽  
H. Ueda ◽  
Z. Han ◽  
...  

Abstract. A new aerosol chemical transport model, Regional Air Quality Model 2 (RAQM2), was developed to simulate Asian air quality. We implemented a simple version of a modal-moment aerosol dynamics model (MADMS) and achieved a completely dynamic (non-equilibrium) solution of a gas-to-particle mass transfer over a wide range of aerosol diameters from 1 nm to super μm. To consider a variety of atmospheric aerosol properties, a category approach was utilized, in which the aerosols were distributed into 4 categories: Aitken mode (ATK), soot-free accumulation mode (ACM), soot aggregates (AGR), and coarse mode (COR). Condensation, evaporation, and Brownian coagulations for each category were solved dynamically. A regional-scale simulation (Δ x = 60 km) was performed for the entire year of 2006 covering the Northeast Asian region. Statistical analyses showed that the model reproduced the regional-scale transport and transformation of the major inorganic anthropogenic and natural air constituents within factors of 2 to 5. The modeled PM1/bulk ratios of the chemical components were consistent with the observations, indicating that the simulations of aerosol mixing types were successful. Non-sea salt SO42- mixed with ATK + ACM was the largest at Hedo in summer, whereas it mixed with AGR was substantial in cold seasons. Ninety-eight percent of the modeled NO3- was mixed with sea salt at Hedo, whereas 53.7% of the NO3- was mixed with sea salt at Gosan, located upwind toward the Asian continent. The condensation of HNO3 onto sea salt particles during transport over the ocean makes the difference in the NO3- mixing type at the two sites. Because the aerosol mixing type alters optical properties and cloud condensation nuclei activity, its accurate prediction and evaluation are indispensable for aerosol-cloud-radiation interaction studies.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 500 ◽  
Author(s):  
Clare Paton-Walsh ◽  
Élise-Andrée Guérette ◽  
Kathryn Emmerson ◽  
Martin Cope ◽  
Dagmar Kubistin ◽  
...  

We present findings from the Measurements of Urban, Marine and Biogenic Air (MUMBA) campaign, which took place in the coastal city of Wollongong in New South Wales, Australia. We focus on a few key air quality indicators, along with a comparison to regional scale chemical transport model predictions at a spatial resolution of 1 km by 1 km. We find that the CSIRO chemical transport model provides accurate simulations of ozone concentrations at most times, but underestimates the ozone enhancements that occur during extreme temperature events. The model also meets previously published performance standards for fine particulate matter less than 2.5 microns in diameter (PM2.5), and the larger aerosol fraction (PM10). We explore the observed composition of the atmosphere within this urban air-shed during the MUMBA campaign and discuss the different influences on air quality in the city. Our findings suggest that further improvements to our ability to simulate air quality in this coastal city can be made through more accurate anthropogenic and biogenic emissions inventories and better understanding of the impact of extreme temperatures on air quality. The challenges in modelling air quality within the urban air-shed of Wollongong, including difficulties in accurate simulation of the local meteorology, are likely to be replicated in many other coastal cities in the Southern Hemisphere.


2017 ◽  
Author(s):  
Peter M. Edwards ◽  
Mathew J. Evans

Abstract. Tropospheric ozone is important for the Earth’s climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model-model comparisons to better identify the root causes of model differences.


Author(s):  
Scott D. Chambers ◽  
Elise-Andree Guérette ◽  
Khalia Monk ◽  
Alan D. Griffiths ◽  
Yang Zhang ◽  
...  

We propose a new technique to prepare statistically-robust benchmarking data for evaluating chemical transport model meteorology and air quality parameters within the urban boundary layer. The approach employs atmospheric class-typing, using nocturnal radon measurements to assign atmospheric mixing classes, and can be applied temporally (across the diurnal cycle), or spatially (to create angular distributions of pollutants as a top-down constraint on emissions inventories). In this study only a short (<1-month) campaign is used, but grouping of the relative mixing classes based on nocturnal mean radon concentrations can be adjusted according to dataset length (i.e., number of days per category), or desired range of within-class variability. Calculating hourly distributions of observed and simulated values across diurnal composites of each class-type helps to: (i) bridge the gap between scales of simulation and observation, (ii) represent the variability associated with spatial and temporal heterogeneity of sources and meteorology without being confused by it, and (iii) provide an objective way to group results over whole diurnal cycles that separates ‘natural complicating factors’ (synoptic non-stationarity, rainfall, mesoscale motions, extreme stability, etc.) from problems related to parameterizations, or between-model differences. We demonstrate the utility of this technique using output from a suite of seven contemporary regional forecast and chemical transport models. Meteorological model skill varied across the diurnal cycle for all models, with an additional dependence on the atmospheric mixing class that varied between models. From an air quality perspective, model skill regarding the duration and magnitude of morning and evening “rush hour” pollution events varied strongly as a function of mixing class. Model skill was typically the lowest when public exposure would have been the highest, which has important implications for assessing potential health risks in new and rapidly evolving urban regions, and also for prioritizing the areas of model improvement for future applications.


2018 ◽  
Vol 18 (19) ◽  
pp. 14133-14148 ◽  
Author(s):  
Shan S. Zhou ◽  
Amos P. K. Tai ◽  
Shihan Sun ◽  
Mehliyar Sadiq ◽  
Colette L. Heald ◽  
...  

Abstract. Tropospheric ozone is an air pollutant that substantially harms vegetation and is also strongly dependent on various vegetation-mediated processes. The interdependence between ozone and vegetation may constitute feedback mechanisms that can alter ozone concentration itself but have not been considered in most studies to date. In this study we examine the importance of dynamic coupling between surface ozone and leaf area index (LAI) in shaping ozone air quality and vegetation. We first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM) and simulate the steady-state responses of LAI to long-term exposure to a range of prescribed ozone levels (from 0 to 100 ppb). We find that most plant functional types suffer a substantial decline in LAI as ozone level increases. Based on the CLM-simulated results, we develop and implement in the GEOS-Chem chemical transport model a parameterization that computes fractional changes in monthly LAI as a function of local mean ozone levels. By forcing LAI to respond to ozone concentrations on a monthly timescale, the model simulates ozone–LAI coupling dynamically via biogeochemical processes including biogenic volatile organic compound (VOC) emissions and dry deposition, without the complication from meteorological changes. We find that ozone-induced damage on LAI can lead to changes in ozone concentrations by −1.8 to +3 ppb in boreal summer, with a corresponding ozone feedback factor of −0.1 to +0.6 that represents an overall self-amplifying effect from ozone–LAI coupling. Substantially higher simulated ozone due to strong positive feedbacks is found in most tropical forests, mainly due to the ozone-induced reductions in LAI and dry deposition velocity, whereas reduced isoprene emission plays a lesser role in these low-NOx environments. In high-NOx regions such as the eastern US, Europe, and China, however, the feedback effect is much weaker and even negative in some regions, reflecting the compensating effects of reduced dry deposition and reduced isoprene emission (which reduces ozone in high-NOx environments). In remote, low-LAI regions, including most of the Southern Hemisphere, the ozone feedback is generally slightly negative due to the reduced transport of NOx–VOC reaction products that serve as NOx reservoirs. This study represents the first step to accounting for dynamic ozone–vegetation coupling in a chemical transport model with ramifications for a more realistic joint assessment of ozone air quality and ecosystem health.


2014 ◽  
Vol 7 (3) ◽  
pp. 335-346 ◽  
Author(s):  
C. Carnevale ◽  
G. Finzi ◽  
A. Pederzoli ◽  
E. Pisoni ◽  
P. Thunis ◽  
...  

2015 ◽  
Vol 8 (2) ◽  
pp. 381-408 ◽  
Author(s):  
B. Sič ◽  
L. El Amraoui ◽  
V. Marécal ◽  
B. Josse ◽  
J. Arteta ◽  
...  

Abstract. This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI), the ground (AERONET, EMEP), and a model inter-comparison project (AeroCom) are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD) observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10) and a better correlation (from 0.06 to 0.32) in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16), and a negative MNMB in the desert dust representation in the African dust outflow region (from −1.01 to −0.22). The updates in sedimentation produced a modest difference; the MNMB with MODIS data from 0.10 in the updated configuration went to 0.11 in the updated configuration only without the sedimentation updates. Yet, the updates in the emissions and the wet deposition made a stronger impact on the results; the MNMB was 0.27 and 0.21 in updated configurations only without emission, and only without wet deposition updates, respectively. Also, the lifetime, the extent, and the strength of the episodic aerosol events are better reproduced in the updated configuration. The wet deposition processes and the differences between the various configurations that were tested greatly influence the representation of the episodic events. However, wet deposition is not a continuous process; it has a local and episodic signature and its representation depends strongly on the precipitation regime in the model.


2017 ◽  
Vol 17 (6) ◽  
pp. 4305-4318 ◽  
Author(s):  
Shantanu H. Jathar ◽  
Matthew Woody ◽  
Havala O. T. Pye ◽  
Kirk R. Baker ◽  
Allen L. Robinson

Abstract. Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data. Mobile sources were predicted to contribute 30–40 % of the OA in southern California (half of which was SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; this difference was driven by differences in SOA production. Model predictions highlighted the need to better constrain multi-generational oxidation reactions in chemical transport models.


2017 ◽  
Vol 17 (22) ◽  
pp. 13669-13680 ◽  
Author(s):  
Peter M. Edwards ◽  
Mathew J. Evans

Abstract. Tropospheric ozone is important for the Earth's climate and air quality. It is produced during the oxidation of organics in the presence of nitrogen oxides. Due to the range of organic species emitted and the chain-like nature of their oxidation, this chemistry is complex and understanding the role of different processes (emission, deposition, chemistry) is difficult. We demonstrate a new methodology for diagnosing ozone production based on the processing of bonds contained within emitted molecules, the fate of which is determined by the conservation of spin of the bonding electrons. Using this methodology to diagnose ozone production in the GEOS-Chem chemical transport model, we demonstrate its advantages over the standard diagnostic. We show that the number of bonds emitted, their chemistry and lifetime, and feedbacks on OH are all important in determining the ozone production within the model and its sensitivity to changes. This insight may allow future model–model comparisons to better identify the root causes of model differences.


Sign in / Sign up

Export Citation Format

Share Document