scholarly journals Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements

2012 ◽  
Vol 12 (10) ◽  
pp. 4493-4512 ◽  
Author(s):  
A. Klonecki ◽  
M. Pommier ◽  
C. Clerbaux ◽  
G. Ancellet ◽  
J.-P. Cammas ◽  
...  

Abstract. This work evaluates the IASI CO product against independent in-situ aircraft data from the MOZAIC program and the POLARCAT aircraft campaign. The validation is carried out by analysing the impact of assimilation of eight months of IASI CO columns retrieved for the period of May to December 2008 into the global chemistry transport model LMDz-INCA. A modelling system based on a sub-optimal Kalman filter was developed and a specific treatment that takes into account the representativeness of observations at the scale of the model grid is applied to the IASI CO columns and associated errors before their assimilation in the model. Comparisons of the assimilated CO profiles with in situ CO measurements indicate that the assimilation leads to a considerable improvement of the model simulations in the middle troposphere as compared with a control run with no assimilation. Model biases in the simulation of background values are reduced and improvement in the simulation of very high concentrations is observed. The improvement is due to the transport by the model of the information present in the IASI CO retrievals. Our analysis also shows the impact of assimilation of CO on the representation of transport into the Arctic region during the POLARCAT summer campaign. A considerable increase in CO mixing ratios over the Asian source region was observed when assimilation was used leading to much higher values of CO during the cross-pole transport episode. These higher values are in good agreement with data from the POLARCAT flights that sampled this plume.

2011 ◽  
Vol 11 (12) ◽  
pp. 31689-31734
Author(s):  
A. Klonecki ◽  
M. Pommier ◽  
C. Clerbaux ◽  
G. Ancellet ◽  
J.-P. Cammas ◽  
...  

Abstract. A modelling system for assimilation of CO total columns measured by the IASI/MetOp was developed. The system, based on a sub-optimal Kalman filter coupled with the LMDz-INCA chemistry transport model, allows both assimilating long periods of historical data and making rapid forecasts of the CO concentrations in the middle troposphere based on latest available measurements. Tests of the forecast system were conducted during the international POLARCAT campaigns. A specific treatment that takes into account the representativeness of observations at the scale of the model grid is applied to the IASI CO columns and associated errors before their assimilation in the model. This paper presents the results of assimilation of eight months of historical satellite data measured in 2008. Comparisons of the assimilated CO profiles with independent in situ CO measurements from the MOZAIC program and the POLARCAT aircraft campaigns indicate that the assimilation leads to a considerable improvement of the model simulations in the middle troposphere as compared with a control run with no assimilation. Model biases in the simulation of background values are reduced and improvement in the simulation of very high concentrations is observed. The improvement is due to the transport by the model of the information present in the IASI CO retrievals. The consistency of the improvement contributes to the validation of the IASI CO data.


2012 ◽  
Vol 12 (10) ◽  
pp. 26245-26295 ◽  
Author(s):  
I. Wohltmann ◽  
T. Wegner ◽  
R. Müller ◽  
R. Lehmann ◽  
M. Rex ◽  
...  

Abstract. Stratospheric chemistry and denitrification are simulated for the Arctic winter 2009/2010 with the Lagrangian Chemistry and Transport Model ATLAS. A number of sensitivity runs is used to explore the impact of uncertainties in chlorine activation and denitrification on the model results. In particular, the efficiency of chlorine activation on different types of liquid aerosol versus activation on nitric acid trihydrate clouds is examined. Additionally, the impact of changes in reaction rate coefficients, in the particle number density of polar stratospheric clouds, in supersaturation, temperature or the extent of denitrification is investigated. Results are compared to satellite measurements of MLS and ACE-FTS and to in-situ measurements onboard the Geophysica aircraft during the RECONCILE measurement campaign. It is shown that even large changes in the underlying assumptions have only a small impact on the modeled ozone loss, even though they can cause considerable differences in chemical evolution and denitrification. In addition, it is shown that chlorine activation on liquid aerosols alone is able to explain the observed magnitude and morphology of the mixing ratios of active chlorine, reservoir gases and ozone.


2007 ◽  
Vol 7 (24) ◽  
pp. 6119-6129 ◽  
Author(s):  
G. Dufour ◽  
S. Szopa ◽  
D. A. Hauglustaine ◽  
C. D. Boone ◽  
C. P. Rinsland ◽  
...  

Abstract. The distribution and budget of oxygenated organic compounds in the atmosphere and their impact on tropospheric chemistry are still poorly constrained. Near-global space-borne measurements of seasonally resolved upper tropospheric profiles of methanol (CH3OH) by the ACE Fourier transform spectrometer provide a unique opportunity to evaluate our understanding of this important oxygenated organic species. ACE-FTS observations from March 2004 to August 2005 period are presented. These observations reveal the pervasive imprint of surface sources on upper tropospheric methanol: mixing ratios observed in the mid and high latitudes of the Northern Hemisphere reflect the seasonal cycle of the biogenic emissions whereas the methanol cycle observed in the southern tropics is highly influenced by biomass burning emissions. The comparison with distributions simulated by the state-of-the-art global chemistry transport model, LMDz-INCA, suggests that: (i) the background methanol (high southern latitudes) is correctly represented by the model considering the measurement uncertainties; (ii) the current emissions from the continental biosphere are underestimated during spring and summer in the Northern Hemisphere leading to an underestimation of modelled upper tropospheric methanol; (iii) the seasonal variation of upper tropospheric methanol is shifted to the fall in the model suggesting either an insufficient destruction of CH3OH (due to too weak chemistry and/or deposition) in fall and winter months or an unfaithful representation of transport; (iv) the impact of tropical biomass burning emissions on upper tropospheric methanol is rather well reproduced by the model. This study illustrates the potential of these first global profile observations of oxygenated compounds in the upper troposphere to improve our understanding of their global distribution, fate and budget.


2011 ◽  
Vol 11 (24) ◽  
pp. 13181-13199 ◽  
Author(s):  
Q. Liang ◽  
J. M. Rodriguez ◽  
A. R. Douglass ◽  
J. H. Crawford ◽  
J. R. Olson ◽  
...  

Abstract. We use aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission to examine the distributions and source attributions of O3 and NOy in the Arctic and sub-Arctic region. Using a number of marker tracers, we distinguish various air masses from the background troposphere and examine their contributions to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has a mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreasing from ~145 ppbv in spring to ~100 ppbv in summer. These observed mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in emissions and stratospheric ozone layer in the past two decades that influence Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses, with mean O3 concentrations of 140–160 ppbv, are significant direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin displays net O3 formation in the Arctic due to its sustainable, high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer). The air masses influenced by the stratosphere sampled during ARCTAS-B also show conversion of HNO3 to PAN. This active production of PAN is the result of increased degradation of ethane in the stratosphere-troposphere mixed air mass to form CH3CHO, followed by subsequent formation of PAN under high NOx conditions. These findings imply that an adequate representation of stratospheric NOy input, in addition to stratospheric O3 influx, is essential to accurately simulate tropospheric Arctic O3, NOx and PAN in chemistry transport models. Plumes influenced by recent anthropogenic and biomass burning emissions observed during ARCTAS show highly elevated levels of hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contain O3 higher than that in the Arctic tropospheric background except some aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.


2013 ◽  
Vol 13 (8) ◽  
pp. 3909-3929 ◽  
Author(s):  
I. Wohltmann ◽  
T. Wegner ◽  
R. Müller ◽  
R. Lehmann ◽  
M. Rex ◽  
...  

Abstract. Stratospheric chemistry and denitrification are simulated for the Arctic winter 2009/2010 with the Lagrangian Chemistry and Transport Model ATLAS. A number of sensitivity runs is used to explore the impact of uncertainties in chlorine activation and denitrification on the model results. In particular, the efficiency of chlorine activation on different types of liquid aerosol versus activation on nitric acid trihydrate clouds is examined. Additionally, the impact of changes in reaction rate coefficients, in the particle number density of polar stratospheric clouds, in supersaturation, temperature or the extent of denitrification is investigated. Results are compared to satellite measurements of MLS and ACE-FTS and to in-situ measurements onboard the Geophysica aircraft during the RECONCILE measurement campaign. It is shown that even large changes in the underlying assumptions have only a small impact on the modelled ozone loss, even though they can cause considerable differences in chemical evolution of other species and in denitrification. Differences in column ozone between the sensitivity runs stay below 10% at the end of the winter. Chlorine activation on liquid aerosols alone is able to explain the observed magnitude and morphology of the mixing ratios of active chlorine, reservoir gases and ozone. This is even true for binary aerosols (no uptake of HNO3 from the gas-phase allowed in the model). Differences in chlorine activation between sensitivity runs are within 30%. Current estimates of nitric acid trihydrate (NAT) number density and supersaturation imply that, at least for this winter, NAT clouds play a relatively small role compared to liquid clouds in chlorine activation. The change between different reaction rate coefficients for liquid or solid clouds has only a minor impact on ozone loss and chlorine activation in our sensitivity runs.


2009 ◽  
Vol 9 (14) ◽  
pp. 4621-4638 ◽  
Author(s):  
X. Tie ◽  
S. Madronich ◽  
G. Li ◽  
Z. Ying ◽  
A. Weinheimer ◽  
...  

Abstract. The quantification of tropospheric O3 production in the downwind of the Mexico City plume is a major objective of the MIRAGE-Mex field campaign. We used a regional chemistry-transport model (WRF-Chem) to predict the distribution of O3 and its precursors in Mexico City and the surrounding region during March 2006, and compared the model with in-situ aircraft measurements of O3, CO, VOCs, NOx, and NOy concentrations. The comparison shows that the model is capable of capturing the timing and location of the measured city plumes, and the calculated variability along the flights is generally consistent with the measured results, showing a rapid increase in O3 and its precursors when city plumes are detected. However, there are some notable differences between the calculated and measured values, suggesting that, during transport from the surface of the city to the outflow plume, ozone mixing ratios are underestimated by about 0–25% during different flights. The calculated O3-NOx, O3-CO, and O3-NOz correlations generally agree with the measured values, and the analyses of these correlations suggest that photochemical O3 production continues in the plume downwind of the city (aged plume), adding to the O3 already produced in the city and exported with the plume. The model is also used to quantify the contributions to OH reactivity from various compounds in the aged plume. This analysis suggests that oxygenated organics (OVOCs) have the highest OH reactivity and play important roles for the O3 production in the aging plume. Furthermore, O3 production per NOx molecule consumed (O3 production efficiency) is more efficient in the aged plume than in the young plume near the city. The major contributor to the high O3 production efficiency in the aged plume is the reaction RO2+NO. By contrast, the reaction of HO2+NO is rather uniformly distributed in the plume.


2011 ◽  
Vol 11 (4) ◽  
pp. 10721-10767 ◽  
Author(s):  
Q. Liang ◽  
J. M. Rodriguez ◽  
A. R. Douglass ◽  
J. H. Crawford ◽  
E. Apel ◽  
...  

Abstract. We analyze the aircraft observations obtained during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellite (ARCTAS) mission together with the GEOS-5 CO simulation to examine O3 and NOy in the Arctic and sub-Arctic region and their source attribution. Using a number of marker tracers and their probability density distributions, we distinguish various air masses from the background troposphere and examine their contribution to NOx, O3, and O3 production in the Arctic troposphere. The background Arctic troposphere has mean O3 of ~60 ppbv and NOx of ~25 pptv throughout spring and summer with CO decreases from ~145 ppbv in spring to ~100 ppbv in summer. These observed CO, NOx and O3 mixing ratios are not notably different from the values measured during the 1988 ABLE-3A and the 2002 TOPSE field campaigns despite the significant changes in the past two decades in processes that could have changed the Arctic tropospheric composition. Air masses associated with stratosphere-troposphere exchange are present throughout the mid and upper troposphere during spring and summer. These air masses with mean O3 concentration of 140–160 ppbv are the most important direct sources of O3 in the Arctic troposphere. In addition, air of stratospheric origin is the only notable driver of net O3 formation in the Arctic due to its sustainable high NOx (75 pptv in spring and 110 pptv in summer) and NOy (~800 pptv in spring and ~1100 pptv in summer) levels. The ARCTAS measurements present observational evidence suggesting significant conversion of nitrogen from HNO3 to NOx and then to PAN (a net formation of ~120 pptv PAN) in summer when air of stratospheric origin is mixed with tropospheric background during stratosphere-to-troposphere transport. These findings imply that an adequate representation of stratospheric O3 and NOy input are essential in accurately simulating O3 and NOx photochemistry as well as the atmospheric budget of PAN in tropospheric chemistry transport models of the Arctic. Anthropogenic and biomass burning pollution plumes observed during ARCTAS show highly elevated hydrocarbons and NOy (mostly in the form of NOx and PAN), but do not contribute significantly to O3 in the Arctic troposphere except in some of the aged biomass burning plumes sampled during spring. Convection and/or lightning influences are negligible sources of O3 in the Arctic troposphere but can have significant impacts in the upper troposphere in the continental sub-Arctic during summer.


2010 ◽  
Vol 10 (7) ◽  
pp. 3155-3162 ◽  
Author(s):  
I. Pisso ◽  
V. Marécal ◽  
B. Legras ◽  
G. Berthet

Abstract. We study the impact of temporal and spatial resolution and changes in modelled meteorological winds in the context of diffusive ensemble Lagrangian reconstructions. In situ tracer measurements are modelled based on coarse resolution global 3-D tracer distributions from a chemistry-transport model and on different time series of meteorological wind fields including a special set of 1-hourly analysed winds which is compared with 3 and 6-hourly operational analysed winds and with 3-hourly ERA-interim reanalysis. Increasing the time resolution of the advecting winds from three to one hour using the operational winds provides an improvement on diffusive reconstructions in the period studied but smaller than that obtained from six to three hours. The positive impact of using 1-hourly winds is similar to that obtained using ERA-Interim 3-hourly winds instead of the 3-hourly ECMWF operational analysis for the same period. This study sets out a technique to quantify differences in time series of meteorological wind fields here applied to assess the optimal space and time resolutions for ensemble Lagrangian reconstructions in the lower stratosphere.


2012 ◽  
Vol 12 (24) ◽  
pp. 11889-11906 ◽  
Author(s):  
G. Krysztofiak ◽  
R. Thiéblemont ◽  
N. Huret ◽  
V. Catoire ◽  
Y. Té ◽  
...  

Abstract. The SPIRALE and SWIR balloon-borne instruments were launched in the Arctic polar region (near Kiruna, Sweden, 67.9° N–21.1° E) during summer on 7 and 24 August 2009 and on 14 August 2009, respectively. The SPIRALE instrument performed in situ measurements of several trace gases including CO and O3 at altitudes between 9 and 34 km, with very high vertical resolution (∼ 5 m). The SWIR-balloon instrument measured total and partial column of several species including CO. The CO stratospheric profile from SPIRALE for 7 August 2009 shows some specific structures with large concentrations in the low levels (potential temperatures between 320 and 380 K, i.e. 10–14 km height). These structures are not present in the CO vertical profile of SPIRALE for 24 August 2009, for which the volume mixing ratios are typical from polar latitudes (∼ 30 ppb). CO total columns retrieved from the IASI-MetOp satellite sounder for the three dates of flights are used to understand this CO variability. SPIRALE and SWIR CO partial columns between 9 and 34 km are compared, allowing us to confirm that the enhancement of CO is localised in the stratosphere. The measurements are also investigated in terms of CO:O3 correlations and using several modelling approaches (trajectory calculations, potential vorticity fields, results of chemistry transport model) in order to characterize the origin of the air masses sampled. The emission sources are qualified in terms of source type (fires, urban pollution) using NH3 and CO measurements from IASI-MetOp and fires detection from MODIS on board the TERRA/AQUA satellite. The results give strong evidence that the unusual abundance of CO on 7 August is due to surface pollution plumes from East Asia and North America transporting to the upper troposphere and then entering the lower stratosphere by isentropic advection. This study strengthens evidence that the composition of low polar stratosphere in summer may be affected by anthropogenic surface emissions through long-range transport.


2011 ◽  
Vol 8 (12) ◽  
pp. 3771-3791 ◽  
Author(s):  
L. Mei ◽  
Y. Xue ◽  
G. de Leeuw ◽  
J. Guang ◽  
Y. Wang ◽  
...  

Abstract. A series of wildfires broke out in Western Russia starting in late July of 2010. Harmful particulates and gases released into the local Russian atmosphere have been reported, as have possible negative consequences for the global atmosphere. In this study, an extremely hazy area and its transport trajectory on Russian wildfires were analysed using aerosol optical depth (AOD) images retrieved via the synergy method from Moderate Resolution Imaging Spectroradiometer (MODIS) data. In addition, we used trace gases (NO2 and SO2) and CO2 products measured using Ozone Monitoring Instrument (OMI) data, vertical distribution of AOD data retrieved from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data, the mass trajectory analyses, synoptic maps from a HYSPLIT model simulation and ground-based data, including AERONET (both AOD and Ångström exponent) data and PM2.5. First, an Optimal Smoothing (OS) scheme was used to develop more precise and reliable AOD data based on multiple competing predictions made using several AOD retrieval models; then, integrated AOD and PM2.5 data were related using a chemical transport model (GEOS-Chem), and the integrated AOD and visibility data were related using the 6S radiative transfer code. The results show that the PM2.5 concentration is enhanced by a factor of 3–5 as determined from both satellite and in situ observations with peak daily mean concentrations of approximately 500 μg m3. Also, the visibility in many parts of Russia, for instance in Moscow, was less than 100 m; in some areas, the visibility was less than 50 m. Additionally, the possible impact on neighbouring countries due to long-transport was analysed for 31 July and 15 August 2010. A comparison of the satellite aerosol products and ground observations from the neighbouring countries suggests that wildfires in Western Russian had little impact on most european and asian countries, the exceptions being Finland, Estonia, Ukraine and Kyrgyzstan. However, a possible impact on the Arctic region was identified; such an effect would have a serious influence on the polar atmospheric enviroment, and on animals such as polar bears.


Sign in / Sign up

Export Citation Format

Share Document