scholarly journals Uptake and emission of VOCs near ground level below a mixed forest at Borden, Ontario

2014 ◽  
Vol 14 (17) ◽  
pp. 9087-9097 ◽  
Author(s):  
M. Gordon ◽  
A. Vlasenko ◽  
R. M. Staebler ◽  
C. Stroud ◽  
P. A. Makar ◽  
...  

Abstract. Understanding of the atmosphere/forest canopy exchange of volatile organic compounds (VOCs) requires insight into the deposition, emission, and chemical reactions of VOCs below the canopy. Between 18 July and 9 August 2009, VOCs were measured with proton-transfer-reaction mass spectrometry (PTR-MS) at six heights between 1 and 6 m beneath a 23 m high mixed-forest canopy. Measured VOCs included methanol, isoprene, acetone, methacrolein and methyl vinyl ketone (MACR + MVK), monoterpenes, and sesquiterpenes. There are pronounced differences in the behaviour of isoprene and its by-products and that of the terpenes. Non-terpene mixing ratios increase with height, suggesting predominantly downward fluxes. In contrast, the terpene mixing ratios decrease with height, suggesting upward fluxes. A 1-D canopy model was used to compare results to measurements with and without surface deposition of isoprene and MACR + MVK and emissions of monoterpenes and sesquiterpenes. Results suggest deposition velocities of 2.7 mm s−1 for isoprene and 1.2 mm s−1 for MACR + MVK and daytime surface emission rates of 63 μg m−2 h−1 for monoterpenes. The modelled isoprene surface deposition is approximately 2% of the canopy-top isoprene emissions and the modelled emissions of monoterpenes comprise approximately 15 to 27% of the canopy-top monoterpene emissions to the atmosphere. These results suggest that surface monoterpene emissions are significant for forest canopy/atmosphere exchange for this mixed-forest location and surface uptake is relatively small for all the species measured in this study.

2014 ◽  
Vol 14 (4) ◽  
pp. 4505-4535
Author(s):  
M. Gordon ◽  
A. Vlasenko ◽  
R. M. Staebler ◽  
C. Stroud ◽  
P. A. Makar ◽  
...  

Abstract. Understanding of the atmosphere/forest canopy exchange of volatile organic compounds (VOCs) requires insight into deposition, emission, and chemical reactions of VOCs below the canopy. Currently, uncertainties in canopy processes, such as stomatal uptake, deposition, and sub-canopy chemistry, make it difficult to derive biogenic VOC emission inventories from canopy VOC concentration gradients. Between 18 July and 9 August 2009, VOCs were measured with proton-transfer-reaction mass spectrometry (PTR-MS) at 6 heights between 1 and 6 m beneath a 23 m high mixed-forest canopy. Measured VOCs included methanol, isoprene, acetone, methacrolein + methyl vinyl ketone (MACR+MVK), monoterpenes and sesquiterpenes. There are pronounced differences in the behaviour of isoprene and its by-products and that of the terpenes. Non-terpene fluxes are predominantly downward. In contrast, the terpene fluxes are significantly upward. A 1-dimensional canopy model was used to compare results to measurements with and without surface deposition of isoprene and MACR+MVK and emissions of monoterpenes and sesquiterpenes. Results suggest deposition velocities of 27 mm s−1 for isoprene and 12 mm s−1 for MACR+MVK and daytime surface emission rates of 63 μg m−2 h−1 for monoterpenes. The modelled isoprene surface deposition is approximately 2% of the canopy top isoprene emissions and the modelled emissions of monoterpenes comprise approximately 15 to 27% of the canopy-top monoterpene emissions to the atmosphere. These results suggest that surface monoterpene emissions are significant for forest canopy/atmosphere exchange for this mixed forest location and surface uptake is relatively small for all the species measured in this study.


2014 ◽  
Vol 14 (1) ◽  
pp. 871-917 ◽  
Author(s):  
C. Kalogridis ◽  
V. Gros ◽  
R. Sarda-Esteve ◽  
B. Langford ◽  
B. Loubet ◽  
...  

Abstract. The CANOPEE project aims to better understand the biosphere-atmosphere exchanges of biogenic volatile organic compounds (BVOC) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the Oak Observatory of the Observatoire de Haute Provence (O3HP) located in the southeast of France. The field site presents one dominant tree species, Quercus pubescens L., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (OxVOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2–8 mg m−2 h1. Net isoprene normalised flux (at 30 °C, 1000 μmol m−2 s−1) was estimated at 6.6 mg m−2 h−1. The (MVK+MACR)-to-isoprene ratio was used to assess the degree of isoprene oxidation. In-canopy chemical oxidation of isoprene was found to be weak, as indicated by the low (MVK+MACR)-to-isoprene ratio (~ 0.13) and low MVK+MACR fluxes, and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy. Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2–0.4 mg m−2 h−1, whereas flux values for monoterpenes and others OxVOC such as acetone and acetaldehyde were below the detection limit.


2014 ◽  
Vol 14 (18) ◽  
pp. 10085-10102 ◽  
Author(s):  
C. Kalogridis ◽  
V. Gros ◽  
R. Sarda-Esteve ◽  
B. Langford ◽  
B. Loubet ◽  
...  

Abstract. The CANOPEE project aims to better understand the biosphere–atmosphere exchanges of biogenic volatile organic compounds (BVOCs) in the case of Mediterranean ecosystems and the impact of in-canopy processes on the atmospheric chemical composition above the canopy. Based on an intensive field campaign, the objective of our work was to determine the chemical composition of the air inside a canopy as well as the net fluxes of reactive species between the canopy and the boundary layer. Measurements were carried out during spring 2012 at the field site of the Oak Observatory of the Observatoire de Haute Provence (O3HP) located in the southeast of France. The site is a forest ecosystem dominated by downy oak, Quercus pubescens Willd., a typical Mediterranean species which features large isoprene emission rates. Mixing ratios of isoprene, its degradation products methylvinylketone (MVK) and methacrolein (MACR) and several other oxygenated VOC (OxVOC) were measured above the canopy using an online proton transfer reaction mass spectrometer (PTR-MS), and fluxes were calculated by the disjunct eddy covariance approach. The O3HP site was found to be a very significant source of isoprene emissions, with daily maximum ambient concentrations ranging between 2–16 ppbv inside and 2–5 ppbv just above the top of the forest canopy. Significant isoprene fluxes were observed only during daytime, following diurnal cycles with midday net emission fluxes from the canopy ranging between 2.0 and 9.7 mg m−2 h1. Net isoprene normalized flux (at 30 °C, 1000 μmol quanta m−2 s−1) was estimated at 7.4 mg m−2 h−1. Evidence of direct emission of methanol was also found exhibiting maximum daytime fluxes ranging between 0.2 and 0.6 mg m−2 h−1, whereas flux values for monoterpenes and others OxVOC such as acetone and acetaldehyde were below the detection limit. The MVK+MACR-to-isoprene ratio provided useful information on the oxidation of isoprene, and is in agreement with recent findings proposing weak production yields of MVK and MACR, in remote forest regions where the NOx concentrations are low. In-canopy chemical oxidation of isoprene was found to be weak and did not seem to have a significant impact on isoprene concentrations and fluxes above the canopy.


2018 ◽  
Vol 18 (5) ◽  
pp. 3403-3418 ◽  
Author(s):  
Ana María Yáñez-Serrano ◽  
Anke Christine Nölscher ◽  
Efstratios Bourtsoukidis ◽  
Eliane Gomes Alves ◽  
Laurens Ganzeveld ◽  
...  

Abstract. Speciated monoterpene measurements in rainforest air are scarce, but they are essential for understanding the contribution of these compounds to the overall reactivity of volatile organic compound (VOC) emissions towards the main atmospheric oxidants, such as hydroxyl radicals (OH), ozone (O3) and nitrate radicals (NO3). In this study, we present the chemical speciation of gas-phase monoterpenes measured in the tropical rainforest at the Amazon Tall Tower Observatory (ATTO, Amazonas, Brazil). Samples of VOCs were collected by two automated sampling systems positioned on a tower at 12 and 24 m height and analysed using gas chromatography–flame ionization detection. The samples were collected in October 2015, representing the dry season, and compared with previous wet and dry season studies at the site. In addition, vertical profile measurements (at 12 and 24 m) of total monoterpene mixing ratios were made using proton-transfer-reaction mass spectrometry. The results showed a distinctly different chemical speciation between day and night. For instance, α-pinene was more abundant during the day, whereas limonene was more abundant at night. Reactivity calculations showed that higher abundance does not generally imply higher reactivity. Furthermore, inter- and intra-annual results demonstrate similar chemodiversity during the dry seasons analysed. Simulations with a canopy exchange modelling system show simulated monoterpene mixing ratios that compare relatively well with the observed mixing ratios but also indicate the necessity of more experiments to enhance our understanding of in-canopy sinks of these compounds.


2014 ◽  
Vol 14 (11) ◽  
pp. 17225-17261 ◽  
Author(s):  
A.-C. Genard-Zielinski ◽  
C. Boissard ◽  
C. Fernandez ◽  
C. Kalogridis ◽  
J. Lathière ◽  
...  

Abstract. We aimed at quantifying Biogenic Volatiles Organic Compounds (BVOC) emissions in June from three Mediterranean species located at the O3HP site (Southern France): Quercus pubescens, Acer monspessulanum and C. coggygria (for isoprene only). As Q. pubescens was shown to be the main BVOC emitter with isoprene representing ≈ 99% of the carbon emitted as BVOC, we mainly focused on this species. C. coggygria was found to be a non-isoprene emitter (no other BVOC were investigated). To fully understand both the canopy effect on Q. pubescens isoprene emission and the inter-individual variability (tree to tree and within canopy), diurnal variations of isoprene were investigated from nine branches (seven branches located to the top of canopy at ≈ 4 m Above Ground Level, and two inside the canopy at ≈ 2 m a.g.l.). Q. pubescens daily mean isoprene emission rates (ERd) fluctuated between 23.1 and 97.7 μg C gDM−1 h−1 and were exponentially correlated with net assimilation (Pn). Q. pubescens daily mean Pn ranged between 5.4 and 13.8, and 2.8 and 6.4 μmol CO2 m−2 s−1 for sunlit and shaded branches respectively. Both ERd and isoprene emission factors (Is) assessed according to Guenther et al. (1993) algorithm, varied by a factor of 4 among the sunlit branches. While sunlit branches ERm was clearly higher than for shaded branches, there was an non-significant variability on Is (58.5 to 76.5 μg C gDM−1 h−1). Diurnal variations of isoprene emission rates (ER) for sunlit branches were also investigated. ER were detected at dawn 2 h after Pn became positive and, exponentially dependent on Pn. Diurnal variations of ER were not equally well described along the day by temperature (CT) and light (CL) parameters according to G93 algorithm. Temperature had more impact than PAR in the morning emission increase. ER was no more correlated to CL × CT between solar noon (maximum ER) and mid-afternoon, possibly due to thermal stress of the plant. A comparison between measured and calculated emissions using two isoprene algorithms (G93 and MEGAN) highlighted the difficulty in assessing isoprene emissions under Mediterranean environmental conditions with current isoprene models.


2013 ◽  
Vol 13 (10) ◽  
pp. 27891-27936
Author(s):  
J. A. Geddes ◽  
J. G. Murphy

Abstract. Significant knowledge gaps persist in the understanding of forest–atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NOx (= NO + NO2) is highly uncertain. Biosphere–atmosphere exchange of NOx and NOy (= NOx + HNO3 + PANs + RONO2 + pNO3− + ...) was measured by eddy covariance above a mixed hardwood forest in central Ontario (HFWR), and a mixed hardwood forest in northern lower Michigan (PROPHET) during the summers of 2011 and 2012 respectively. NOx and NOy mixing ratios were measured by a custom built two-channel analyzer based on chemiluminescence, with selective NO2 conversion via LED photolysis and NOy conversion via a hot molybdenum converter. Consideration of interferences from water and O3, and random uncertainty of the calculated fluxes are discussed. NOy flux observations were predominantly of deposition at both locations. The magnitude of deposition scaled with NOy mixing ratios, resulting in campaign-average deposition velocities close to 0.6 cm s−1 at both locations. A~period of highly polluted conditions (NOy concentrations up to 18 ppb) showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NOy flux was 0.14 mg (N) m−2 day−1 and 0.34 mg (N) m−2 day−1 at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22% and 40% at HFWR and PROPHET, respectively.


2010 ◽  
Vol 10 (11) ◽  
pp. 28565-28633
Author(s):  
K. A. McKinney ◽  
B. H. Lee ◽  
A. Vasta ◽  
T. V. Pho ◽  
J. W. Munger

Abstract. Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in western Massachusetts during the 2005 and 2007 growing seasons are reported. Measurements were made using proton transfer reaction mass spectrometry (PTR-MS) and converted to fluxes using the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 h−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 h−1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 h−1 in 2005 and 0.19 mg m−2 h−1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m−2 h−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 h−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge (m/z) ratios of 73 (0.05 mg m−2 h−1 in 2005; 0.03 mg m−2 h−1 in 2007) and 153 (5 μg m−2 h−1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene, respectively, were also observed.


2009 ◽  
Vol 9 (13) ◽  
pp. 4207-4227 ◽  
Author(s):  
G. Eerdekens ◽  
L. Ganzeveld ◽  
J. Vilà-Guerau de Arellano ◽  
T. Klüpfel ◽  
V. Sinha ◽  
...  

Abstract. Tropical forests are a strong source of biogenic volatile organic compounds (BVOCs) to the atmosphere which can potentially impact the atmospheric oxidation capacity. Here we present airborne and ground-based BVOC measurements representative for the long dry season covering a large area of the northern Amazonian rainforest (6–3° N, 50–59° W). The measurements were conducted during the October 2005 GABRIEL (Guyanas Atmosphere-Biosphere exchange and Radicals Intensive Experiment with the Learjet) campaign. The vertical (35 m to 10 km) and diurnal (09:00–16:00) profiles of isoprene, its oxidation products methacrolein and methyl vinyl ketone and methanol and acetone, measured by PTR-MS (Proton Transfer Reaction Mass Spectrometry), have been used to empirically estimate their emission fluxes from the forest canopy on a regional scale. The mixed layer isoprene emission flux, inferred from the airborne measurements above 300 m, is 5.7 mg isoprene m−2 h−1 after compensating for chemistry and ~6.9 mg isoprene m−2 h−1 taking detrainment into account. This surface flux is in general agreement with previous tropical forest studies. Inferred methanol and acetone emission fluxes are 0.5 mg methanol m−2 h−1 and 0.35 mg acetone m−2 h−1, respectively. The BVOC measurements were compared with fluxes and mixing ratios simulated with a single-column chemistry and climate model (SCM). The inferred isoprene flux is substantially smaller than that simulated with an implementation of a commonly applied BVOC emission algorithm in the SCM.


2011 ◽  
Vol 11 (10) ◽  
pp. 4807-4831 ◽  
Author(s):  
K. A. McKinney ◽  
B. H. Lee ◽  
A. Vasta ◽  
T. V. Pho ◽  
J. W. Munger

Abstract. Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS) and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 hr−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 hr−1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 hr−1 in 2005 and 0.19 mg m−2 hr−1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m−2 hr−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 hr−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge ($m/z$) ratios of 73 (0.05 mg m−2 hr−1 in 2005; 0.03 mg m−2 hr−1 in 2007) and 153 (5 μg m−2 hr−1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene or methyl salicylate, respectively, were also observed.


2014 ◽  
Vol 14 (6) ◽  
pp. 2939-2957 ◽  
Author(s):  
J. A. Geddes ◽  
J. G. Murphy

Abstract. Significant knowledge gaps persist in the understanding of forest–atmosphere exchange of reactive nitrogen oxides, partly due to a lack of direct observations. Chemical transport models require representations of dry deposition over a variety of land surface types, and the role of canopy exchange of NOx (= NO + NO2) is highly uncertain. Biosphere–atmosphere exchange of NOx and NOy (= NOx + HNO3 + PANs + RONO2 + pNO3− + ...) was measured by eddy covariance above a mixed hardwood forest in central Ontario (Haliburton Forest and Wildlife Reserve, or HFWR), and a mixed hardwood forest in northern lower Michigan (Program for Research on Oxidants: Photochemistry, Emissions and Transport, or PROPHET) during the summers of 2011 and 2012 respectively. NOx and NOy mixing ratios were measured by a custom-built two-channel analyser based on chemiluminescence, with selective NO2 conversion via LED photolysis and NOy conversion via a hot molybdenum converter. Consideration of interferences from water vapour and O3, and random uncertainty of the calculated fluxes are discussed. NOy flux observations were predominantly of deposition at both locations. In general, the magnitude of deposition scaled with NOy mixing ratios. Average midday (12:00–16:00) deposition velocities at HFWR and PROPHET were 0.20 ± 0.25 and 0.67 ± 1.24 cm s−1 respectively. Average nighttime (00:00–04:00) deposition velocities were 0.09 ± 0.25 cm s−1 and 0.08 ± 0.16 cm s−1 respectively. At HFWR, a period of highly polluted conditions (NOy concentrations up to 18 ppb) showed distinctly different flux characteristics than the rest of the campaign. Integrated daily average NOy flux was −0.14 mg (N) m−2 day−1 and −0.34 mg (N) m−2 day−1 (net deposition) at HFWR and PROPHET respectively. Concurrent wet deposition measurements were used to estimate the contributions of dry deposition to total reactive nitrogen oxide inputs, found to be 22 and 40% at HFWR and PROPHET respectively.


Sign in / Sign up

Export Citation Format

Share Document