scholarly journals Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H<sub>2</sub>O, and O<sub>3</sub>

2015 ◽  
Vol 15 (18) ◽  
pp. 10471-10507 ◽  
Author(s):  
L. Froidevaux ◽  
J. Anderson ◽  
H.-J. Wang ◽  
R. A. Fuller ◽  
M. J. Schwartz ◽  
...  

Abstract. We describe the publicly available data from the Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS) project and provide some results, with a focus on hydrogen chloride (HCl), water vapor (H2O), and ozone (O3). This data set is a global long-term stratospheric Earth system data record, consisting of monthly zonal mean time series starting as early as 1979. The data records are based on high-quality measurements from several NASA satellite instruments and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT. We examine consistency aspects between the various data sets. To merge ozone records, the time series are debiased relative to SAGE II (Stratospheric Aerosol and Gas Experiments) values by calculating average offsets versus SAGE II during measurement overlap periods, whereas for other species the merging derives from an averaging procedure during overlap periods. The GOZCARDS files contain mixing ratios on a common pressure–latitude grid, as well as standard errors and other diagnostics; we also present estimates of systematic uncertainties in the merged products. Monthly mean temperatures for GOZCARDS were also produced, based directly on data from the Modern-Era Retrospective analysis for Research and Applications. The GOZCARDS HCl merged product comes from the Halogen Occultation Experiment (HALOE), ACE-FTS and lower-stratospheric Aura Microwave Limb Sounder (MLS) data. After a rapid rise in upper-stratospheric HCl in the early 1990s, the rate of decrease in this region for 1997–2010 was between 0.4 and 0.7 % yr−1. On 6–8-year timescales, the rate of decrease peaked in 2004–2005 at about 1 % yr−1, and it has since levelled off, at ~ 0.5 % yr−1. With a delay of 6–7 years, these changes roughly follow total surface chlorine, whose behavior versus time arises from inhomogeneous changes in the source gases. Since the late 1990s, HCl decreases in the lower stratosphere have occurred with pronounced latitudinal variability at rates sometimes exceeding 1–2 % yr−1. Recent short-term tendencies of lower-stratospheric and column HCl vary substantially, with increases from 2005 to 2010 for northern midlatitudes and deep tropics, but decreases (increases) after 2011 at northern (southern) midlatitudes. For H2O, the GOZCARDS product covers both stratosphere and mesosphere, and the same instruments as for HCl are used, along with Upper Atmosphere Research Satellite (UARS) MLS stratospheric H2O data (1991–1993). We display seasonal to decadal-type variability in H2O from 22 years of data. In the upper mesosphere, the anticorrelation between H2O and solar flux is now clearly visible over two full solar cycles. Lower-stratospheric tropical H2O has exhibited two periods of increasing values, followed by fairly sharp drops (the well-documented 2000–2001 decrease and a recent drop in 2011–2013). Tropical decadal variability peaks just above the tropopause. Between 1991 and 2013, both in the tropics and on a near-global basis, H2O has decreased by ~ 5–10 % in the lower stratosphere, but about a 10 % increase is observed in the upper stratosphere and lower mesosphere. However, such tendencies may not represent longer-term trends. For ozone, we used SAGE I, SAGE II, HALOE, UARS and Aura MLS, and ACE-FTS data to produce a merged record from late 1979 onward, using SAGE II as the primary reference. Unlike the 2 to 3 % increase in near-global column ozone after the late 1990s reported by some, GOZCARDS stratospheric column O3 values do not show a recent upturn of more than 0.5 to 1 %; long-term interannual column ozone variations from GOZCARDS are generally in very good agreement with interannual changes in merged total column ozone (Version 8.6) data from SBUV instruments. A brief mention is also made of other currently available, commonly formatted GOZCARDS satellite data records for stratospheric composition, namely those for N2O and HNO3.

2015 ◽  
Vol 15 (5) ◽  
pp. 5849-5957 ◽  
Author(s):  
L. Froidevaux ◽  
J. Anderson ◽  
H.-J. Wang ◽  
R. A. Fuller ◽  
M. J. Schwartz ◽  
...  

Abstract. We describe the publicly available dataset from the Global OZone Chemistry And Related Datasets for the Stratosphere (GOZCARDS) project, and provide some results, with a~focus on hydrogen chloride (HCl), water vapor (H2O), and ozone (O3). This dataset is a global long-term stratospheric Earth System Data Record (ESDR), consisting of monthly zonal mean time series starting as early as 1979. The data records are based on high quality measurements from several NASA satellite instruments and ACE-FTS on SCISAT. We examine consistency aspects between the various datasets. To merge ozone records, the time series are debiased by calculating average offsets with respect to SAGE II during periods of measurement overlap, whereas for other species, the merging derives from an averaging procedure based on overlap periods. The GOZCARDS files contain mixing ratios on a common pressure/latitude grid, as well as standard errors and other diagnostics; we also present estimates of systematic uncertainties in the merged products. Monthly mean temperatures for GOZCARDS were also produced, based directly on data from the Modern-Era Retrospective analysis for Research and Applications (MERRA). The GOZCARDS HCl merged product comes from HALOE, ACE-FTS and (for the lower stratosphere) Aura MLS data. After a~rapid rise in upper stratospheric HCl in the early 1990s, the rate of decrease in this region for 1997–2010 was between 0.4 and 0.7% yr−1. On shorter timescales (6 to 8 years), the rate of decrease peaked in 2004–2005 at about 1% yr−1, and has since levelled off, at ~0.5 yr−1. With a delay of 6–7 years, these changes roughly follow total surface chlorine, whose behavior vs. time arises from inhomogeneous changes in the source gases. Since the late 1990s, HCl decreases in the lower stratosphere have occurred with pronounced latitudinal variability at rates sometimes exceeding 1–2 yr−1. There has been a significant reversal in the changes of lower stratospheric HCl abundances and columns for 2005–2010, in particular at northern midlatitudes and in the deep tropics, where short-term increases are observed. However, lower stratospheric HCl tendencies appear to be reversing after about 2011, with (short-term) decreases at northern midlatitudes and some increasing tendencies at southern midlatitudes. For GOZCARDS H2O, covering the stratosphere and mesosphere, the same instruments as for HCl are used, along with UARS MLS stratospheric H2O data (1991–1993). We display seasonal to decadal-type variability in H2O from 22 years of data. In the upper mesosphere, the anti-correlation between H2O and solar flux is now clearly visible over two full solar cycles. Lower stratospheric tropical H2O has exhibited two periods of increasing values, followed by fairly sharp drops, the well-documented 2000–2001 decrease, and another recent decrease in 2011–2013. Tropical decadal variability peaks just above the tropopause. Between 1991 and 2013, both in the tropics and on a near-global basis, H2O has decreased by ~ 5–10% in the lower stratosphere, but about a 10% increase is observed in the upper stratosphere and lower mesosphere. However, recent tendencies may not hold for the long-term, and the addition of a few years of data can significantly modify trend results. For ozone, we used SAGE I, SAGE II, HALOE, UARS and Aura MLS, and ACE-FTS data to produce a~merged record from late 1979 onward, using SAGE II as the primary reference for aligning (debiasing) the other datasets. Other adjustments were needed in the upper stratosphere to circumvent temporal drifts in SAGE II O3 after June 2000, as a result of the (temperature-dependent) data conversion from a density/altitude to a mixing ratio/pressure grid. Unlike the 2 to 3% increase in near-global column ozone after the late 1990s reported by some, GOZCARDS stratospheric column O3 values do not show a recent upturn of more than 0.5 to 1%; continuing studies of changes in global ozone profiles, as well as ozone columns, are warranted. A brief mention is also made of other currently available, commonly-formatted GOZCARDS satellite data records for stratospheric composition, namely those for N2O and HNO3.


2017 ◽  
Author(s):  
Chance W. Sterling ◽  
Bryan J. Johnson ◽  
Samuel J. Oltmans ◽  
Herman G. J. Smit ◽  
Allen F. Jordan ◽  
...  

Abstract. NOAA’s program of long term monitoring of the vertical distribution of ozone with Electrochemical Concentration Cell (ECC) ozonesondes has undergone a number of changes over the 50 year record. In order to produce a homogenous data set, these changes must be documented and where necessary, appropriate corrections applied. This is the first comprehensive and consistent reprocessing of NOAA’s ozonesonde data records that corrects for these changes using the rawest form of the data (cell current and pump temperature) in native resolution as well as a point by point uncertainty calculation that is unique to each sounding. The reprocessing is carried out uniformly at all eight ozonesonde sites in NOAA’s network with differences in sensing solution and ozonesonde types accounted for in the same way at all sites. The corrections used to homogenize the NOAA ozonesonde data records greatly improve the ozonesonde measurements with an average one sigma uncertainty of ±4–6 % in the stratosphere and ±5–20 % in the troposphere. A comparison of the integrated column ozone from the ozonesonde profile with co-located Dobson spectrophotometers total column ozone measurements shows agreement within ±5 % for > 70 % of the profiles. Very good agreement is also found in the stratosphere between ozonesonde profiles and profiles retrieved from the Solar Backscatter Ultraviolet Instruments (SBUV).


2017 ◽  
Author(s):  
Janusz W. Krzyścin ◽  
Piotr Sobolewski

Abstract. Erythemal daily doses measured at the Polish Polar Station, Hornsund (77°00' N, 15°33' E), for the period 1996–2001 and 2005–2016 are homogenized using yearly calibration constants derived from the comparison of observed doses for cloudless conditions with the corresponding doses calculated by radiative transfer (RT) simulations. Modeled all-sky doses are calculated by the multiplication of cloudless RT doses by the empirical cloud modification factor dependent on the daily sunshine duration. An all-sky model is built using daily erythemal doses measured in the period 2005–2006–2007. The model is verified by comparisons with the 1996–1997–1998 and 2009–2010–2011 measured data. The daily doses since 1983 (beginning of the proxy data) are reconstructed using the all-sky model with the historical data of the column ozone from the satellite measurements (SBUV merged ozone data set), the snow depth (for ground albedo estimation), and the observed daily sunshine duration at the site. Trend analyses of the monthly and yearly time series comprising of the reconstructed and observed doses reveal statistically significant trend only in March (~ 1 %/yr) in the period 1983–2016. The trends based on the observed data only (1996–2001 and 2005–2016) show declining tendencies during spring (March–April–May) of ~ 1 %/yr. An analysis of sources of the yearly dose variability since 1983 provides that cloud cover changes are a basic driver of the long-term UV changes at the location.


2018 ◽  
Vol 11 (6) ◽  
pp. 3661-3687 ◽  
Author(s):  
Chance W. Sterling ◽  
Bryan J. Johnson ◽  
Samuel J. Oltmans ◽  
Herman G. J. Smit ◽  
Allen F. Jordan ◽  
...  

Abstract. NOAA's program of long-term monitoring of the vertical distribution of ozone with electrochemical concentration cell (ECC) ozonesondes has undergone a number of changes over the 50-year record. In order to produce a homogenous data set, these changes must be documented and, where necessary, appropriate corrections applied. This is the first comprehensive and consistent reprocessing of NOAA's ozonesonde data records that corrects for these changes using the rawest form of the data (cell current and pump temperature) in native resolution as well as a point-by-point uncertainty calculation that is unique to each sounding. The reprocessing is carried out uniformly at all eight ozonesonde sites in NOAA's network with differences in sensing solution and ozonesonde types accounted for in the same way at all sites. The corrections used to homogenize the NOAA ozonesonde data records greatly improve the ozonesonde measurements with an average one sigma uncertainty of ±4–6 % in the stratosphere and ±5–20 % in the troposphere. A comparison of the integrated column ozone from the ozonesonde profile with co-located Dobson spectrophotometers total column ozone measurements shows agreement within ±5 % for > 70 % of the profiles. Very good agreement is also found in the stratosphere between ozonesonde profiles and profiles retrieved from the Solar Backscatter Ultraviolet (SBUV) instruments.


2021 ◽  
Author(s):  
Annette Dietmaier ◽  
Thomas Baumann

&lt;p&gt;The European Water Framework Directive (WFD) commits EU member states to achieve a good qualitative and quantitative status of all their water bodies.&amp;#160; WFD provides a list of actions to be taken to achieve the goal of good status.&amp;#160; However, this list disregards the specific conditions under which deep (&gt; 400 m b.g.l.) groundwater aquifers form and exist.&amp;#160; In particular, deep groundwater fluid composition is influenced by interaction with the rock matrix and other geofluids, and may assume a bad status without anthropogenic influences. Thus, a new concept with directions of monitoring and modelling this specific kind of aquifers is needed. Their status evaluation must be based on the effects induced by their exploitation. Here, we analyze long-term real-life production data series to detect changes in the hydrochemical deep groundwater characteristics which might be triggered by balneological and geothermal exploitation. We aim to use these insights to design a set of criteria with which the status of deep groundwater aquifers can be quantitatively and qualitatively determined. Our analysis is based on a unique long-term hydrochemical data set, taken from 8 balneological and geothermal sites in the molasse basin of Lower Bavaria, Germany, and Upper Austria. It is focused on a predefined set of annual hydrochemical concentration values. The data range dates back to 1937. Our methods include developing threshold corridors, within which a good status can be assumed, and developing cluster analyses, correlation, and piper diagram analyses. We observed strong fluctuations in the hydrochemical characteristics of the molasse basin deep groundwater during the last decades. Special interest is put on fluctuations that seem to have a clear start and end date, and to be correlated with other exploitation activities in the region. For example, during the period between 1990 and 2020, bicarbonate and sodium values displayed a clear increase, followed by a distinct dip to below-average values and a subsequent return to average values at site F. During the same time, these values showed striking irregularities at site B. Furthermore, we observed fluctuations in several locations, which come close to disqualifying quality thresholds, commonly used in German balneology. Our preliminary results prove the importance of using long-term (multiple decades) time series analysis to better inform quality and quantity assessments for deep groundwater bodies: most fluctuations would stay undetected within a &lt; 5 year time series window, but become a distinct irregularity when viewed in the context of multiple decades. In the next steps, a quality assessment matrix and threshold corridors will be developed, which take into account methods to identify these fluctuations. This will ultimately aid in assessing the sustainability of deep groundwater exploitation and reservoir management for balneological and geothermal uses.&lt;/p&gt;


2015 ◽  
Vol 8 (10) ◽  
pp. 4487-4505 ◽  
Author(s):  
K.-L. Chang ◽  
S. Guillas ◽  
V. E. Fioletov

Abstract. Total column ozone variations estimated using ground-based stations provide important independent source of information in addition to satellite-based estimates. This estimation has been vigorously challenged by data inhomogeneity in time and by the irregularity of the spatial distribution of stations, as well as by interruptions in observation records. Furthermore, some stations have calibration issues and thus observations may drift. In this paper we compare the spatial interpolation of ozone levels using the novel stochastic partial differential equation (SPDE) approach with the covariance-based kriging. We show how these new spatial predictions are more accurate, less uncertain and more robust. We construct long-term zonal means to investigate the robustness against the absence of measurements at some stations as well as instruments drifts. We conclude that time series analyzes can benefit from the SPDE approach compared to the covariance-based kriging when stations are missing, but the positive impact of the technique is less pronounced in the case of drifts.


2008 ◽  
Vol 8 (3) ◽  
pp. 505-522 ◽  
Author(s):  
G. L. Manney ◽  
W. H. Daffer ◽  
K. B. Strawbridge ◽  
K. A. Walker ◽  
C. D. Boone ◽  
...  

Abstract. The first three Arctic winters of the ACE mission represented two extremes of winter variability: Stratospheric sudden warmings (SSWs) in 2004 and 2006 were among the strongest, most prolonged on record; 2005 was a record cold winter. Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns were conducted at Eureka (80° N, 86° W) during each of these winters. New satellite measurements from ACE-Fourier Transform Spectrometer (ACE-FTS), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), and Aura Microwave Limb Sounder (MLS), along with meteorological analyses and Eureka lidar temperatures, are used to detail the meteorology in these winters, to demonstrate its influence on transport, and to provide a context for interpretation of ACE-FTS and validation campaign observations. During the 2004 and 2006 SSWs, the vortex broke down throughout the stratosphere, reformed quickly in the upper stratosphere, and remained weak in the middle and lower stratosphere. The stratopause reformed at very high altitude, near 75 km. ACE measurements covered both vortex and extra-vortex conditions in each winter, except in late-February through mid-March 2004 and 2006, when the strong, pole-centered vortex that reformed after the SSWs resulted in ACE sampling only inside the vortex in the middle through upper stratosphere. The 2004 and 2006 Eureka campaigns were during the recovery from the SSWs, with the redeveloping vortex over Eureka. 2005 was the coldest winter on record in the lower stratosphere, but with an early final warming in mid-March. The vortex was over Eureka at the start of the 2005 campaign, but moved away as it broke up. Disparate temperature profile structure and vortex evolution resulted in much lower (higher) temperatures in the upper (lower) stratosphere in 2004 and 2006 than in 2005. Satellite temperatures agree well with lidar data up to 50–60 km, and ACE-FTS, MLS and SABER show good agreement in high-latitude temperatures throughout the winters. Consistent with a strong, cold upper stratospheric vortex and enhanced radiative cooling after the SSWs, MLS and ACE-FTS trace gas measurements show strongly enhanced descent in the upper stratospheric vortex in late January through March 2006 compared to that in 2005.


2018 ◽  
Vol 611 ◽  
pp. A85 ◽  
Author(s):  
R. Silvotti ◽  
S. Schuh ◽  
S.-L. Kim ◽  
R. Lutz ◽  
M. Reed ◽  
...  

V391 Peg (alias HS 2201+2610) is a subdwarf B (sdB) pulsating star that shows both p- and g-modes. By studying the arrival times of the p-mode maxima and minima through the O–C method, in a previous article the presence of a planet was inferred with an orbital period of 3.2 years and a minimum mass of 3.2 MJup. Here we present an updated O–C analysis using a larger data set of 1066 h of photometric time series (~2.5× larger in terms of the number of data points), which covers the period between 1999 and 2012 (compared with 1999–2006 of the previous analysis). Up to the end of 2008, the new O–C diagram of the main pulsation frequency (f1) is compatible with (and improves) the previous two-component solution representing the long-term variation of the pulsation period (parabolic component) and the giant planet (sine wave component). Since 2009, the O–C trend of f1 changes, and the time derivative of the pulsation period (p.) passes from positive to negative; the reason of this change of regime is not clear and could be related to nonlinear interactions between different pulsation modes. With the new data, the O–C diagram of the secondary pulsation frequency (f2) continues to show two components (parabola and sine wave), like in the previous analysis. Various solutions are proposed to fit the O–C diagrams of f1 and f2, but in all of them, the sinusoidal components of f1 and f2 differ or at least agree less well than before. The nice agreement found previously was a coincidence due to various small effects that are carefully analyzed. Now, with a larger dataset, the presence of a planet is more uncertain and would require confirmation with an independent method. The new data allow us to improve the measurement of p. for f1 and f2: using only the data up to the end of 2008, we obtain p.1 = (1.34 ± 0.04) × 10−12 and p.2 = (1.62 ± 0.22) × 10−12. The long-term variation of the two main pulsation periods (and the change of sign of p.1) is visible also in direct measurements made over several years. The absence of peaks near f1 in the Fourier transform and the secondary peak close to f2 confirm a previous identification as l = 0 and l = 1, respectively, and suggest a stellar rotation period of about 40 days. The new data allow constraining the main g-mode pulsation periods of the star.


2020 ◽  
Vol 13 (1) ◽  
pp. 287-308
Author(s):  
Stefan Lossow ◽  
Charlotta Högberg ◽  
Farahnaz Khosrawi ◽  
Gabriele P. Stiller ◽  
Ralf Bauer ◽  
...  

Abstract. The annual variation of δD in the tropical lower stratosphere is a critical indicator for the relative importance of different processes contributing to the transport of water vapour through the cold tropical tropopause region into the stratosphere. Distinct observational discrepancies of the δD annual variation were visible in the works of Steinwagner et al. (2010) and Randel et al. (2012). Steinwagner et al. (2010) analysed MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) observations retrieved with the IMK/IAA (Institut für Meteorologie und Klimaforschung in Karlsruhe, Germany, in collaboration with the Instituto de Astrofísica de Andalucía in Granada, Spain) processor, while Randel et al. (2012) focused on ACE-FTS (Atmospheric Chemistry Experiment Fourier Transform Spectrometer) observations. Here we reassess the discrepancies based on newer MIPAS (IMK/IAA) and ACE-FTS data sets, also showing for completeness results from SMR (Sub-Millimetre Radiometer) observations and a ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg and Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulation (Eichinger et al., 2015b). Similar to the old analyses, the MIPAS data set yields a pronounced annual variation (maximum about 75 ‰), while that derived from the ACE-FTS data set is rather weak (maximum about 25 ‰). While all data sets exhibit the phase progression typical for the tape recorder, the annual maximum in the ACE-FTS data set precedes that in the MIPAS data set by 2 to 3 months. We critically consider several possible reasons for the observed discrepancies, focusing primarily on the MIPAS data set. We show that the δD annual variation in the MIPAS data up to an altitude of 40 hPa is substantially impacted by a “start altitude effect”, i.e. dependency between the lowermost altitude where MIPAS retrievals are possible and retrieved data at higher altitudes. In itself this effect does not explain the differences with the ACE-FTS data. In addition, there is a mismatch in the vertical resolution of the MIPAS HDO and H2O data (being consistently better for HDO), which actually results in an artificial tape-recorder-like signal in δD. Considering these MIPAS characteristics largely removes any discrepancies between the MIPAS and ACE-FTS data sets and shows that the MIPAS data are consistent with a δD tape recorder signal with an amplitude of about 25 ‰ in the lowermost stratosphere.


Sign in / Sign up

Export Citation Format

Share Document