vertical ozone
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 10)

H-INDEX

23
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Nora Mettig ◽  
Mark Weber ◽  
Alexei Rozanov ◽  
John P. Burrows ◽  
Pepijn Veefkind ◽  
...  

Abstract. Vertical ozone profiles from combined spectral measurements in the ultraviolet and infrared spectral range were retrieved by using data from TROPOMI/S5P and CrIS/Suomi-NPP, which are flying in loose formation three minutes apart in the same orbit. A previous study of ozone profiles retrieved exclusively from TROPOMI UV spectra showed that the vertical resolution in the troposphere is clearly limited (Mettig et al, 2021). The vertical resolution and the vertical extent of the ozone profiles is improved by combining both wavelength ranges compared to retrievals limited to UV or IR spectral data only. The combined retrieval particularly improves the accuracy of the retrieved tropospheric ozone and to a lesser degree stratospheric ozone up to 30 km. An increase in the degree-of-freedom by one was found in the UV+IR retrieval compared to the UV-only retrieval. Compared to previous publications, which investigated combinations of UV and IR observations from the pairs OMI/TES and GOME-2/IASI, the degree of freedom is lower, which is attributed to the reduced spectral resolution of CrIS compared to TES or IASI. Tropospheric lidar and ozonesondes were used to validate the ozone profiles and tropospheric ozone column (TOC). From the comparison with tropospheric lidars both ozone profiles and TOCs show smaller biases for the retrieved data from the combined UV+IR observation than the UV observations alone. While the TOCs show good agreement, the profiles have a positive bias of more than 20 % between 10 and 15 km. The reason is probably a positive stratospheric bias from the IR retrieval. The comparison of the UV+IR and UV ozone profiles up to 30 km with MLS (Microwave Limb Sounder) demonstrates the improvement of the UV+IR profile in the stratosphere.


2021 ◽  
Author(s):  
Alexey A. Nevzorov ◽  
Aleksey V. Nevzorov ◽  
Andrey P. Makeev ◽  
Yurii Gridnev ◽  
Oleg A. Romanovskii ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1139
Author(s):  
Sergey Dolgii ◽  
Alexey A. Nevzorov ◽  
Alexey V. Nevzorov ◽  
Yurii Gridnev ◽  
Olga Kharchenko

The purpose of the work is to study the influence of temperature correction on ozone vertical distribution (OVD) in the upper troposphere–stratosphere in the altitude range~(5–45) km, using differential absorption lidar (DIAL), operating at the sensing wavelengths 299/341 nm and 308/353 nm. We analyze the results of lidar measurements, obtained using meteorological data from MLS/Aura and IASI/MetOp satellites and temperature model, at the wavelengths of 299/341 nm and 308/353 nm in 2018 at Siberian Lidar Station (SLS) of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences. To estimate how the temperature correction of absorption cross-sections influences the OVD retrieval from lidar measurements, we calculated the deviations of the difference between two profiles, retrieved using satellite- and model-based temperatures. Two temperature seasons were singled out to analyze how real temperature influences the retrieved OVD profiles. In the stratosphere, when satellite-derived temperature and model are used for retrieval, the deviations may reach absolute values of ozone concentration in the range from −0.97 × 1012 molecules × cm−3 at 19.7 km to 1.05 × 1012 molecules × cm−3 at 25.3 km during winter–spring season, and from −0.17 × 1012 molecules × cm−3 at height of 17.4 km to 0.27 × 1012 molecules × cm−3 at 40 km in summer–fall period. In the troposphere, when satellite-derived temperature is used in the retrieval, the deviations may reach absolute values of ozone concentration in the range from −1.95 × 1012 molecules × cm−3 at 18.6 km to 1.23 × 1012 molecules × cm−3 at 18.2 km during winter–spring season, and from −0.15 × 1012 molecules × cm−3 at height of 11.4 km to 0.3 × 1012 molecules × cm−3 at 8 km during summer–fall season.


2020 ◽  
Author(s):  
Natalya Kramarova ◽  
Pawan Bhartia ◽  
Glen Jaross ◽  
Zhong Chen

<p>The Ozone Mapping and Profiler Suite represents a new generation of the US ozone measuring instruments aimed to monitor the ozone recovery associated to the reduction in levels of man-made ozone depleting substances regulated by the Montreal protocol. The first OMPS was launched on board of the Suomi NPP satellite in October 2011. The Limb Profiler is a part of the OMPS instrumental suite, and it collects solar radiances scattered from the atmospheric limb in the UV and VIS spectral ranges. The next OMPS Limb Profiler is scheduled to launch in 2022 on board of NASA/NOAA JPSS-2 mission. These limb scattering measurements allow to retrieve vertical ozone profiles from the tropopause up to the mesosphere with a high vertical resolution (~2 km). The expected ozone recovery is almost three times slower than the ozone loss observed in 1980s and 1990s. To detect such small trends in ozone concentration, the instrument calibrations should be extremely accurate. Comparisons of ozone retrievals from OMPS LP with the correlative satellite measurements from Aura MLS and ISS SAGE III revealed that OMPS LP retrievals accurately characterize the vertical ozone distribution in different atmospheric regions which are most sensitive to changes in the stratospheric composition and dynamics. Between 18 and 42 km the mean differences between LP and correlative measurements are within ±10%, except for the northern high latitudes where between 20 and 32 km biases exceed 10% due to the measurement errors. We also found a small positive drift of ~0.5%/yr against MLS with a pattern that is consistent with the ~150-meter drift (over 7 years) in sensor pointing detected by one of our altitude resolving methods. The spatial patterns in the ozone biases and drifts suggest that remaining errors in the LP ozone retrievals are due to errors in altitude registration and instrument calibrations. We present a study where we evaluate calibrations of the OMPS LP by converting ozone differences between OMPS LP and Aura MLS into differences in radiances. Then these radiance differences are compared with the LP measured radiances to determine errors in OMPS LP calibrations. Since the OMPS LP has three slits, some of the errors, like a drift in the altitude registration, should be common across all three slits, but other errors will be unique for each slit, helping to isolate different sources of errors. This approach can be extended to earlier ESA’s limb scattering missions, like SCIAMACHY and OSIRIS, since MLS has long overlap with the ENVISAT and Odin missions.</p>


2020 ◽  
Author(s):  
Gennadi Milinevsky ◽  
Asen Grytsai ◽  
Oleksandr Evtushevsky ◽  
Yury Yampolsky ◽  
Andrew Klekociuk ◽  
...  

<p>Ozone content in the terrestrial atmosphere is dependent on chemical and dynamical factors including catalytic destruction under the influence of chlorine and bromine, Brewer–Dobson circulation, and large-scale atmospheric waves. The appearance of ozone molecules in the stratosphere is caused by solar ultraviolet radiation as well. Therefore solar activity variations can influence ozone content. The 11-year solar cycle had been earlier identified in the upper stratosphere. Satellite ozone observations were begun from the 1970s are almost continuous from 1979 including the vertical ozone distribution, in particular with the use of Solar Backscattered UltraViolet (SBUV) instruments. These data cover the troposphere and stratosphere layers, from the surface to near 50 km. Vertical ozone distribution over the Ukrainian Antarctic station Akademik Vernadsky (65.25°S, 64.27°W) and in the corresponding latitudinal range 60–65°S is studied in this work with the following analysis of possible solar activity display in other latitudinal belts. Sunspot numbers have been considered as the simplest characteristics of solar activity. We have considered SBUV yearly data paying main attention to the time range from 1979 when the measurements are most reliable. Periodicity in the series of ozone layer content has been studied with use of wavelet transform. Processing of the SBUV data over Vernadsky has shown a dominating period near 10–11 years at the heights 18–31 km. In the troposphere and lower stratosphere, this period is unclear. A similar situation is observed above 31 km indicating the upper altitudinal threshold in the presence of the 10–11-year periodicity in the ozone data. The solar cycle influence on the ozone vertical distribution in the Antarctic region has been studied. From our analysis, the solar cycle plays an important role in the decadal variability of the mid-stratospheric ozone over Vernadsky Station with decrease of the effect both in the troposphere – lower stratosphere and in the upper stratosphere. A similar analysis is also realized for zonal mean ozone at the 60–65°S latitudes belt and for the region of zonal ozone maximum (Casey), where the solar cycle was indicated at the heights 31–37 km. Thus, zonal asymmetry in the heights of the maximum solar cycle effect in the Antarctic ozone exists. Periods close to 11 years are observed in the lower stratosphere of equatorial latitudes exhibiting seasonal dependency. At altitudes, 25–30 km, the southern stratosphere has more evident signs of solar cycle periods than the northern one. The summer upper stratosphere with a high flux of direct solar radiation is also a region with prominent quasi-11 year periods. In sum, three main regions with solar activity influence (tropical lower stratosphere, west Antarctic middle stratosphere, and east Antarctic upper stratosphere) are identified. The asymmetry between solar cycle influence (i) in the northern and southern hemisphere mid-stratosphere and (ii) zonal ozone maximum and minimum over Antarctica is denoted for the first time.</p><p>This work was partly supported by the project 19BF051-08 Taras Shevchenko National University of Kyiv and by the International Center of Future Science, Jilin University.</p>


Author(s):  
Alexey A. Nevzorov ◽  
Aleksey V. Nevzorov ◽  
Andrey P. Makeev ◽  
Yurii V. Gridnev ◽  
Oleg A. Romanovskii ◽  
...  

2019 ◽  
Vol 11 (24) ◽  
pp. 7026 ◽  
Author(s):  
Qian Chen ◽  
Dongsheng Wang ◽  
Xiaobing Li ◽  
Bai Li ◽  
Ruifeng Song ◽  
...  

Ozone is an important secondary air pollutant and plays different significant roles in regulating the formation of secondary organic aerosols. However, the characteristics of winter vertical ozone distributions have rarely been studied. In the winter of 2017, field experiments were performed in Shanghai, China using hexacopter unmanned aerial vehicle (UAV) platforms. The vertical profiles of ozone were obtained from 0–1200 m above the ground level. Results show that the UAV observations were reliable to capture the vertical variations of ozone. Vertical ozone profiles in the winter are classified into four categories: (1) well-mixed profile, (2) altitudinal increasing profile, (3) stratification profile, and (4) spike profile. Results show that although the average surface ozone level was relatively low, strong ozone variability and high ozone concentrations occurred at the upper air. The maximum observed ozone concentration was 220 ppb. In addition, using meteorological profiles and backward trajectories, we found that the ozone elevation aloft can be attributed to the downward transport of air flow from higher altitudes. Furthermore, ozone accumulation in the winter could be influenced by the horizontal transport of air masses for the northern part of China. This study successfully used hexacopter UAV platforms to perform vertical observations within the boundary layer. This provides systematic classification of winter ozone distribution within the boundary layer.


2019 ◽  
Vol 37 (4) ◽  
pp. 525-533
Author(s):  
Peter Križan

Abstract. Planetary and gravity waves play an important role in the dynamics of the atmosphere. They are present in the atmospheric distribution of temperature, wind, and ozone content. These waves are detectable also in the vertical profile of ozone and they cause its undulation. One of the structures occurring in the vertical ozone profile is laminae, which are narrow layers of enhanced or depleted ozone concentrations in the vertical ozone profile. They are connected with the total amount of ozone in the atmosphere and with the activity of the planetary and gravity waves. The aim of this paper is to quantify these processes in midlatitudinal Europe. We compare the occurrence of laminae induced by planetary waves (PL) with the occurrence of these induced by gravity waves (GL). We show that the PL are 10–20 times more frequent than that of GL. There is a strong annual variation of PL, while GL exhibit only a very weak variation. With the increasing lamina size the share of GL decreases and the share of PL increases. The vertical profile of lamina occurrence is different for PL and GL smaller than 2 mPa. For laminae greater than 2 mPa this difference is smaller.


Sign in / Sign up

Export Citation Format

Share Document