scholarly journals The MCM v3.3.1 degradation scheme for isoprene

2015 ◽  
Vol 15 (20) ◽  
pp. 11433-11459 ◽  
Author(s):  
M. E. Jenkin ◽  
J. C. Young ◽  
A. R. Rickard

Abstract. The chemistry of isoprene degradation in the Master Chemical Mechanism (MCM) has been systematically refined and updated to reflect recent advances in understanding, with these updates appearing in the latest version, MCM v3.3.1. The complete isoprene degradation mechanism in MCM v3.3.1 consists of 1926 reactions of 602 closed shell and free radical species, which treat the chemistry initiated by reaction with OH radicals, NO3 radicals and ozone (O3). A detailed overview of the updates is provided, within the context of reported kinetic and mechanistic information. The revisions mainly relate to the OH-initiated chemistry, which tends to dominate under atmospheric conditions, although these include updates to the chemistry of some products that are also generated from the O3- and NO3-initiated oxidation. The revisions have impacts in a number of key areas, including HOx recycling, NOx recycling and the formation of species reported to play a role in SOA (secondary organic aerosol)-formation mechanisms. The performance of the MCM v3.3.1 isoprene mechanism has been compared with those of earlier versions (MCM v3.1 and MCM v3.2) over a range of relevant conditions, using a box model of the tropical forested boundary layer. The results of these calculations are presented and discussed and are used to illustrate the impacts of the mechanistic updates in MCM v3.3.1.

2015 ◽  
Vol 15 (6) ◽  
pp. 9709-9766 ◽  
Author(s):  
M. E. Jenkin ◽  
J. C. Young ◽  
A. R. Rickard

Abstract. The chemistry of isoprene degradation in the Master Chemical Mechanism (MCM) has been systematically refined and updated to reflect recent advances in understanding, with these updates appearing in the latest version, MCM v3.3. The complete isoprene degradation mechanism in MCM v3.3 consists of 1935 reactions of 605 closed shell and free radical species, which treat the chemistry initiated by reaction with OH radicals, NO3 radicals and ozone (O3). A detailed overview of the updates is provided, within the context of reported kinetic and mechanistic information. The revisions mainly relate to the OH-initiated chemistry, which tends to dominate under atmospheric conditions, although these include updates to the chemistry of some products that are also generated from the O3 - and NO3-initiated oxidation. The revisions have impacts in a number of key areas, including HOx recycling, NOx recycling and the formation of species reported to play a role in SOA-formation mechanisms. The performance of the MCM v3.3 isoprene mechanism has been compared with those of earlier versions (MCM v3.1 and MCM v3.2) over a range of relevant conditions, using a box model of the tropical forested boundary layer. The results of these calculations are presented and discussed, and are used to illustrate the impacts of the mechanistic updates in MCM v3.3.


2021 ◽  
Author(s):  
Yat Sing Pang ◽  
Martin Kaminski ◽  
Anna Novelli ◽  
Philip Carlsson ◽  
Ismail-Hakki Acir ◽  
...  

<p>Limonene is the fourth-most abundant monoterpene in the atmosphere, which upon oxidation leads to the formation of secondary organic aerosol (SOA) and thereby influences climate and air quality.</p><p>In this study, the oxidation of limonene by OH at different atmospherically relevant NO and HO<sub>2</sub> levels (NO: 0.1 – 10 ppb; HO<sub>2</sub>: 20 ppt) was investigated in simulation experiments in the SAPHIR chamber at Forschungszentrum Jülich. The analysis focuses on comparing measured radical concentrations (RO<sub>2</sub>, HO<sub>2</sub>, OH) and OH reactivity (k<sub>OH</sub>) with modeled values calculated using the Master Chemical Mechanism (MCM) version 3.3.1.</p><p>At high and medium NO concentrations, RO<sub>2</sub> is expected to quickly react with NO. An HO<sub>2</sub> radical is produced during the process that can be converted back to an OH radical by another reaction with NO. Consistently, for experiments conducted at medium NO levels (~0.5 ppb, RO<sub>2</sub> lifetime ~10 s), simulated RO<sub>2</sub>, HO<sub>2</sub>, and OH agree with observations within the measurement uncertainties, if the OH reactivity of oxidation products is correctly described.</p><p>At lower NO concentrations, the regeneration of HO<sub>2</sub> in the RO<sub>2</sub> + NO reaction is slow and the reaction of RO<sub>2</sub> with HO<sub>2</sub> gains importance in forming peroxides. However, simulation results show a large discrepancy between calculated radical concentrations and measurements at low NO levels (<0.1 ppb, RO<sub>2</sub> lifetime ~ 100 s). Simulated RO<sub>2</sub> concentrations are found to be overestimated by a factor of three; simulated HO<sub>2</sub> concentrations are underestimated by 50 %; simulated OH concentrations are underestimated by about 35%, even if k<sub>OH</sub> is correctly described. This suggests that there could be additional RO<sub>2</sub> reaction pathways that regenerate HO<sub>2</sub> and OH radicals become important, but they are not taken into account in the MCM model.</p>


2019 ◽  
Author(s):  
Qun Zhang ◽  
Yongfu Xu ◽  
Long Jia

Abstract. The effect of relative humidity (RH) on the secondary organic aerosol (SOA) formation from the photooxidation of m-xylene initiated by OH radicals in the absence of seed particles was investigated in a smog chamber. The SOA yields were determined based on the particle mass concentrations measured with a scanning mobility particle sizer (SMPS) and reacted m-xylene concentrations measured with a gas chromatograph-mass spectrometer (GC-MS). The SOA components were analyzed using Fourier transform infrared spectrometer (FTIR) and ultrahigh performance liquid chromatograph-electrospray ionization-high-resolution mass spectrometer (UPLC-ESI-HRMS). A significant discrepancy was observed in SOA mass concentration and yield variation with the RH conditions. The SOA yield is 13.8 % and 0.8 % at low RH (13.7 %) and high RH (79.1 %), respectively, with the difference being over an order of magnitude. The relative increase of C-O-C at high RH from the FTIR analysis of functional groups indicates that the oligomers from carbonyl compounds cannot well explain the suppression of SOA yield. Highly oxygenated molecules (HOMs) were observed to be suppressed in the HRMS spectra. The chemical mechanism for explaining the RH effects on SOA formation from m-xylene-OH system is proposed based on the analysis of both FTIR and HRMS measurements as well as Master Chemical Mechanism (MCM) simulations. The reduced SOA at high RH is mainly ascribed to the less formation of oligomers and the suppression of RO2 autoxidation. As a result, high RH can obstruct the oligomerization and autoxidation that contribute to the SOA formation.


2019 ◽  
Vol 19 (23) ◽  
pp. 15007-15021 ◽  
Author(s):  
Qun Zhang ◽  
Yongfu Xu ◽  
Long Jia

Abstract. The effect of relative humidity (RH) on secondary organic aerosol (SOA) formation from the photooxidation of m-xylene initiated by OH radicals in the absence of seed particles was investigated in a Teflon reactor. The SOA yields were determined based on the particle mass concentrations measured with a scanning mobility particle sizer (SMPS) and reacted m-xylene concentrations measured with a gas chromatograph–mass spectrometer (GC-MS). The SOA components were analyzed using a Fourier transform infrared (FTIR) spectrometer and an ultrahigh-performance liquid chromatograph–electrospray ionization–high-resolution mass spectrometer (UPLC-ESI-HRMS). A significant decrease was observed in SOA mass concentration and yield variation with the increasing RH conditions. The SOA yields are 14.0 %–16.5 % and 0.8 %–3.2 % at low RH (14 %) and high RH (74 %–79 %), respectively, with the difference being nearly 1 order of magnitude. Some of the reduction in the apparent yield may be due to the faster wall loss of semi-volatile products of oxidation at higher RH. The chemical mechanism for explaining the RH effects on SOA formation from m-xylene–OH system is proposed based on the analysis of both FTIR and HRMS measurements, and the Master Chemical Mechanism (MCM) prediction is used as the assistant. The FTIR analysis shows that the proportion of oligomers with C-O-C groups from carbonyl compounds in SOA at high RH is higher than that at low RH, but further information cannot be provided by the FTIR results to well explain the negative RH effect on SOA formation. In the HRMS spectra, it is found that C2H2O is one of the most frequent mass differences at low and high RHs, that the compounds with a lower carbon number in the formula at low RH account for a larger proportion than those at high RH and that the compounds at high RH have higher O : C ratios than those at low RH. The HRMS results suggest that the RH may suppress oligomerization where water is involved as a by-product and may influence the further particle-phase reaction of highly oxygenated organic molecules (HOMs) formed in the gas phase. In addition, the negative RH effect on SOA formation is enlarged based on the gas-to-particle partitioning rule.


2017 ◽  
Author(s):  
Changjin Hu ◽  
Qiao Ma ◽  
Zhi Liu ◽  
Yue Cheng ◽  
Liqing Hao ◽  
...  

Abstract. Limonene has a strong tendency to undergo ozonolysis to form semi-volatile and low-volatility compounds that contribute to secondary organic aerosols (SOAs) both outdoors and indoors. The influence of NO2 on SOA formation from ozonolysis of limonene has been evaluated using chamber experiments and the Master Chemical Mechanism (MCM) coupled with a gas-particle partitioning model in this work. A series of 21 indoor chamber experiments were carried out with or without NO2 under different [O3]0 / [VOC]0 ratios, and these experimental data were compared with the model simulations. Agreement in SOA yields was observed between the experimental observations and model simulations under varying conditions. Generally, SOA mass yields are positively dependent on [O3]0 / [VOC]0 without the presence of NO2. However, the introduction of NO2 leads to a more complicated change in SOA yield, which is shown to be related to initial [O3] / [VOC] ratios. When [O3]0 / [VOC]0 > 2, the introduction of NO2 results in an increase of SOA yield in the range of NO2 studied in this work; whereas a weak negative effect was found for SOA formation according to the introduction of ~ 250 ppbv NO2 under [O3]0 / [VOC]0 


2013 ◽  
Vol 10 (3) ◽  
pp. 194 ◽  
Author(s):  
Haofei Zhang ◽  
Harshal M. Parikh ◽  
Jyoti Bapat ◽  
Ying-Hsuan Lin ◽  
Jason D. Surratt ◽  
...  

Environmental context Fine particulate matter (PM2.5) in the Earth’s atmosphere plays an important role in climate change and human health, in which secondary organic aerosol (SOA) that forms from the photooxidation of volatile organic compounds (VOCs) has a significant contribution. SOA derived from isoprene, the most abundant non-methane VOC emitted into the Earth’s atmosphere, has been widely studied to interpret its formation mechanisms. However, the ability to predict isoprene SOA using current models remains difficult due to the lack of understanding of isoprene chemistry. Abstract Secondary organic aerosol (SOA) formation from the photooxidation of isoprene was simulated against smog chamber experiments with varied concentrations of isoprene, nitrogen oxides (NOx=NO + NO2) and ammonium sulfate seed aerosols. A semi-condensed gas-phase isoprene chemical mechanism (ISO-UNC) was coupled with different aerosol-phase modelling frameworks to simulate SOA formation, including: (1) the Odum two-product approach, (2) the 1-D volatility basis-set (VBS) approach and (3) a new condensed kinetic model based upon the gas-particle partitioning theory and reactive uptake processes. The first two approaches are based upon empirical parameterisations from previous studies. The kinetic model uses a gas-phase mechanism to explicitly predict the major intermediate precursors, namely the isoprene-derived epoxides, and hence simulate SOA formation. In general, they all tend to significantly over predict SOA formation when semivolatile concentrations are higher because more semivolatiles are forced to produce SOA in the models to maintain gas-particle equilibrium; yet the data indicate otherwise. Consequently, modified dynamic parameterised models, assuming non-equilibrium partitioning, were incorporated and could improve the model performance. In addition, the condensed kinetic model was expanded by including an uptake limitation representation so that reactive uptake processes slow down or even stop; this assumes reactive uptake reactions saturate seed aerosols. The results from this study suggest that isoprene SOA formation by reactive uptake of gas-phase precursors is likely limited by certain particle-phase features, and at high gas-phase epoxide levels, gas-particle equilibrium is not obtained. The real cause of the limitation needs further investigation; however, the modified kinetic model in this study could tentatively be incorporated in large-scale SOA models given its predictive ability.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1346
Author(s):  
Iustinian Gabriel Bejan ◽  
Romeo-Iulian Olariu ◽  
Peter Wiesen

Nitrophenols are important products of the aromatic compounds photooxidation and play a considerable role in urban chemistry. Nitrophenols are important components of agricultural biomass burning that could influence the climate. The formation of secondary organic aerosol from the direct photolysis of nitrophenols was investigated for the first time in a quartz glass simulation chamber under simulated solar radiation. The results from these experiments indicate rapid SOA formation. The proposed mechanism for the gas-phase degradation of nitrophenols through photolysis shows the formation of biradicals that could react further in the presence of oxygen to form low volatile highly oxygenated compounds responsible for secondary organic aerosol formation. The inhibiting effect of NOx and the presence of an OH radical scavenger on the aerosol formation were also studied. For 2-nitrophenol, significant aerosol formation yields were observed in the absence of an OH radical scavenger and NOx, varying in the range of 18%–24%. A gas-phase/aerosol partitioning model was applied assuming the presence of only one compound in both phases. A degradation mechanism is proposed to explain the aerosol formation observed in the photolysis of nitrophenols. The atmospheric impact of nitrophenol photolysis is discussed and the importance for atmospheric chemical models is assessed.


2019 ◽  
Author(s):  
Christopher Y. Lim ◽  
David H. Hagan ◽  
Matthew M. Coggon ◽  
Abigail R. Koss ◽  
Kanako Sekimoto ◽  
...  

Abstract. Biomass burning is an important source of aerosol and trace gases to the atmosphere, but how these emissions change chemically during their lifetimes is not fully understood. As part of the Fire Influence on Regional and Global Environments Experiment (FIREX 2016), we investigated the effect of photochemical aging on biomass burning organic aerosol (BBOA), with a focus on fuels from the western United States. Emissions were sampled into a small (150 L) environmental chamber and photochemically aged via the addition of ozone and irradiation by 254 nm light. While some fraction of species undergoes photolysis, the vast majority of aging occurs via reaction with OH radicals, with total OH exposures corresponding to the equivalent of up to 10 days of atmospheric oxidation. For all fuels burned, large and rapid changes are seen in the ensemble chemical composition of BBOA, as measured by an aerosol mass spectrometer (AMS). Secondary organic aerosol (SOA) formation is seen for all aging experiments and continues to grow with increasing OH exposure, but the magnitude of the SOA formation is highly variable between experiments. This variability can be explained well by a combination of experiment-to-experiment differences in OH exposure and the total concentration of non-methane organic gases (NMOGs) in the chamber before oxidation, measured by PTR-ToF-MS (r2 values from 0.64 to 0.83). From this relationship, we calculate the fraction of carbon from biomass burning NMOGs that is converted to SOA as a function of equivalent atmospheric aging time, with carbon yields ranging from 24 ± 4 % after 6 hours to 56 ± 9 % after 4 days.


2013 ◽  
Vol 13 (4) ◽  
pp. 2091-2113 ◽  
Author(s):  
J. E. Shilling ◽  
R. A. Zaveri ◽  
J. D. Fast ◽  
L. Kleinman ◽  
M. L. Alexander ◽  
...  

Abstract. The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS), an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS), and trace gas detectors (CO, NO, NOx) deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA) (85% on average) with smaller concentrations of sulfate (5%), nitrate (6%) and ammonium (3%) observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs), with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO), we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.2 μg m−3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg m−3 and ΔOA/ΔCO ratios of 35–44 μg m−3 ppmv. But, when biogenic and anthropogenic emissions mixed, OA levels were enhanced, with median OA concentrations of 11.4 μg m−3 and ΔOA/ΔCO ratios of 77–157 μg m−3 ppmv. Taken together, our observations show that production of OA was enhanced when anthropogenic emissions from Sacramento mixed with isoprene-rich air from the foothills. After considering several anthropogenic/biogenic interaction mechanisms, we conclude that NOx concentrations play a strong role in enhancing SOA formation from isoprene, though the chemical mechanism for the enhancement remains unclear. If these observations are found to be robust in other seasons and in areas outside of Sacramento, regional and global aerosol modules will need to incorporate more complex representations of NOx-dependent SOA mechanisms and yields into their algorithms. Ultimately, accurately predicting OA mass concentrations and their effect on radiation balance will require a mechanistically-based treatment of the interactions of biogenic and anthropogenic emissions.


Sign in / Sign up

Export Citation Format

Share Document