scholarly journals Influence of NO<sub>2</sub> on secondary organic aerosol formation from ozonolysis of limonene

Author(s):  
Changjin Hu ◽  
Qiao Ma ◽  
Zhi Liu ◽  
Yue Cheng ◽  
Liqing Hao ◽  
...  

Abstract. Limonene has a strong tendency to undergo ozonolysis to form semi-volatile and low-volatility compounds that contribute to secondary organic aerosols (SOAs) both outdoors and indoors. The influence of NO2 on SOA formation from ozonolysis of limonene has been evaluated using chamber experiments and the Master Chemical Mechanism (MCM) coupled with a gas-particle partitioning model in this work. A series of 21 indoor chamber experiments were carried out with or without NO2 under different [O3]0 / [VOC]0 ratios, and these experimental data were compared with the model simulations. Agreement in SOA yields was observed between the experimental observations and model simulations under varying conditions. Generally, SOA mass yields are positively dependent on [O3]0 / [VOC]0 without the presence of NO2. However, the introduction of NO2 leads to a more complicated change in SOA yield, which is shown to be related to initial [O3] / [VOC] ratios. When [O3]0 / [VOC]0 > 2, the introduction of NO2 results in an increase of SOA yield in the range of NO2 studied in this work; whereas a weak negative effect was found for SOA formation according to the introduction of ~ 250 ppbv NO2 under [O3]0 / [VOC]0 

2010 ◽  
Vol 10 (7) ◽  
pp. 17369-17405 ◽  
Author(s):  
J. Ofner ◽  
H.-U. Krüger ◽  
H. Grothe ◽  
P. Schmitt-Kopplin ◽  
K. Whitmore ◽  
...  

Abstract. Secondary organic aerosol was produced from the aromatic precursors catechol and guaiacol by reaction with ozone in the presence and absence of simulated sunlight and humidity and investigated for its properties as a proxy for humic-like substances (HULIS). Beside a small particle size, a relatively low molecular weight and typical optical features in the UV/VIS spectral range, HULIS contain a typical aromatic and/or olefinic chemical structure and highly oxidized functional groups within a high chemical diversity. Various methods were used to characterize the secondary organic aerosols obtained: Fourier transform infrared spectroscopy (FTIR) demonstrated the formation of different carbonyl containing functional groups as well as structural and functional differences between aerosols formed at different environmental conditions. UV/VIS spectroscopy of filter samples showed that the particulate matter absorbs far into the visible range up to more than 500 nm. Ultrahigh resolved mass spectroscopy (ICR-FT/MS) determined O/C-ratios between 0.3 and 1 and main molecular weights between 200 and 500 Da. Temperature-programmed-pyrolysis mass spectroscopy identified carboxylic acids and lactones as major functional groups. Particle sizing using CNC-DMPS demonstrated the formation of small particles during a secondary organic aerosol formation process. Particle imaging using field-emission-gun scanning electron microscopy (FEG-SEM) showed spherical particles, forming clusters and chains. Hence, secondary organic aerosols from catechol and guaiacol are appropriate model substances for studies of the processing of aromatic secondary organic aerosols and atmospheric HULIS on the laboratory scale.


2010 ◽  
Vol 10 (12) ◽  
pp. 30205-30277 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25%, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15% oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


Author(s):  
Xianli Duan ◽  
Xianyu Song ◽  
Shi Ruifang ◽  
Wang Xuan ◽  
Suhang Chen ◽  
...  

Toluene is an important constituent of liquid fuel, and it contributes to the formation of secondary organic aerosol (SOA) under photochemical conditions. However, the underlying mechanism of toluene SOA is...


2006 ◽  
Vol 6 (2) ◽  
pp. 403-418 ◽  
Author(s):  
D. Johnson ◽  
S. R. Utembe ◽  
M. E. Jenkin ◽  
R. G. Derwent ◽  
G. D. Hayman ◽  
...  

Abstract. A photochemical trajectory model has been used to simulate the chemical evolution of air masses arriving at the TORCH field campaign site in the southern UK during late July and August 2003, a period which included a widespread and prolonged photochemical pollution episode. The model incorporates speciated emissions of 124 non-methane anthropogenic VOC and three representative biogenic VOC, coupled with a comprehensive description of the chemistry of their degradation. A representation of the gas/aerosol absorptive partitioning of ca. 2000 oxygenated organic species generated in the Master Chemical Mechanism (MCM v3.1) has been implemented, allowing simulation of the contribution to organic aerosol (OA) made by semi- and non-volatile products of VOC oxidation; emissions of primary organic aerosol (POA) and elemental carbon (EC) are also represented. Simulations of total OA mass concentrations in nine case study events (optimised by comparison with observed hourly-mean mass loadings derived from aerosol mass spectrometry measurements) imply that the OA can be ascribed to three general sources: (i) POA emissions; (ii) a "ubiquitous" background concentration of 0.7 µg m-3; and (iii) gas-to-aerosol transfer of lower volatility products of VOC oxidation generated by the regional scale processing of emitted VOC, but with all partitioning coefficients increased by a species-independent factor of 500. The requirement to scale the partitioning coefficients, and the implied background concentration, are both indicative of the occurrence of chemical processes within the aerosol which allow the oxidised organic species to react by association and/or accretion reactions which generate even lower volatility products, leading to a persistent, non-volatile secondary organic aerosol (SOA). The contribution of secondary organic material to the simulated OA results in significant elevations in the simulated ratio of organic carbon (OC) to EC, compared with the ratio of 1.1 assigned to the emitted components. For the selected case study events, [OC]/[EC] is calculated to lie in the range 2.7-9.8, values which are comparable with the high end of the range reported in the literature.


2015 ◽  
Vol 15 (14) ◽  
pp. 8077-8100 ◽  
Author(s):  
K. P. Wyche ◽  
P. S. Monks ◽  
K. L. Smallbone ◽  
J. F. Hamilton ◽  
M. R. Alfarra ◽  
...  

Abstract. Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i.e. toluene) oxidation and "more realistic" plant mesocosm systems, demonstrates that such an ensemble of chemometric mapping has the potential to be used for the classification of more complex spectra of unknown origin. More specifically, the addition of mesocosm data from fig and birch tree experiments shows that isoprene and monoterpene emitting sources, respectively, can be mapped onto the statistical model structure and their positional vectors can provide insight into their biological sources and controlling oxidative chemistry. The potential to extend the methodology to the analysis of ambient air is discussed using results obtained from a zero-dimensional box model incorporating mechanistic data obtained from the Master Chemical Mechanism (MCMv3.2). Such an extension to analysing ambient air would prove a powerful asset in assisting with the identification of SOA sources and the elucidation of the underlying chemical mechanisms involved.


2011 ◽  
Vol 11 (13) ◽  
pp. 6639-6662 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25 %, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15 % oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2007 ◽  
Vol 34 (20) ◽  
Author(s):  
Chen Song ◽  
Rahul A. Zaveri ◽  
M. Lizabeth Alexander ◽  
Joel A. Thornton ◽  
Sasha Madronich ◽  
...  

2005 ◽  
Vol 5 (4) ◽  
pp. 7829-7874 ◽  
Author(s):  
D. Johnson ◽  
S. R. Utembe ◽  
M. E. Jenkin ◽  
R. G. Derwent ◽  
G. D. Hayman ◽  
...  

Abstract. A photochemical trajectory model has been used to simulate the chemical evolution of air masses arriving at the TORCH field campaign site in the southern UK during late July and August 2003, a period which included a widespread and prolonged photochemical pollution episode. The model incorporates speciated emissions of 124 non-methane anthropogenic VOC and three representative biogenic VOC, coupled with a comprehensive description of the chemistry of their degradation. A representation of the gas/aerosol absorptive partitioning of ca. 2000 oxygenated organic species generated in the Master Chemical Mechanism (MCM v3.1) has been developed and implemented, allowing simulation of the contribution to organic aerosol (OA) made by semi- and non-volatile products of VOC oxidation; emissions of primary organic aerosol (POA) and elemental carbon (EC) are also represented. Simulations of total OA mass concentrations in nine case study events (optimised by comparison with observed mass loadings derived from aerosol mass spectrometry measurements) imply that the OA can be ascribed to three general sources: (i) POA emissions; (ii) a ubiquitous background concentration of 0.7 µg m−3; and (iii) gas-to-aerosol transfer of lower volatility products of VOC oxidation generated by the regional scale processing of emitted VOC, but with all partitioning coefficients increased by a species-independent factor of 500. The requirement to scale the partitioning coefficients, and the implied background concentration, are both indicative of the occurrence of chemical processes within the aerosol which allow the oxidised organic species to react by association and/or accretion reactions which generate even lower volatility products, leading to a persistent, non-volatile secondary organic aerosol (SOA). The contribution of secondary organic material to the simulated OA results in significant elevations in the simulated ratio of organic carbon (OC) to EC, compared with the ratio of 1.1 assigned to the emitted components. For the selected case study events, [OC]/[EC] is calculated to lie in the range 2.7–9.8, values which are comparable with the high end of the range reported in the literature.


2019 ◽  
Author(s):  
Qun Zhang ◽  
Yongfu Xu ◽  
Long Jia

Abstract. The effect of relative humidity (RH) on the secondary organic aerosol (SOA) formation from the photooxidation of m-xylene initiated by OH radicals in the absence of seed particles was investigated in a smog chamber. The SOA yields were determined based on the particle mass concentrations measured with a scanning mobility particle sizer (SMPS) and reacted m-xylene concentrations measured with a gas chromatograph-mass spectrometer (GC-MS). The SOA components were analyzed using Fourier transform infrared spectrometer (FTIR) and ultrahigh performance liquid chromatograph-electrospray ionization-high-resolution mass spectrometer (UPLC-ESI-HRMS). A significant discrepancy was observed in SOA mass concentration and yield variation with the RH conditions. The SOA yield is 13.8 % and 0.8 % at low RH (13.7 %) and high RH (79.1 %), respectively, with the difference being over an order of magnitude. The relative increase of C-O-C at high RH from the FTIR analysis of functional groups indicates that the oligomers from carbonyl compounds cannot well explain the suppression of SOA yield. Highly oxygenated molecules (HOMs) were observed to be suppressed in the HRMS spectra. The chemical mechanism for explaining the RH effects on SOA formation from m-xylene-OH system is proposed based on the analysis of both FTIR and HRMS measurements as well as Master Chemical Mechanism (MCM) simulations. The reduced SOA at high RH is mainly ascribed to the less formation of oligomers and the suppression of RO2 autoxidation. As a result, high RH can obstruct the oligomerization and autoxidation that contribute to the SOA formation.


Sign in / Sign up

Export Citation Format

Share Document